
pykafka
Release 2.6.1.dev1

Aug 19, 2017

Contents

1 Getting Started 3

2 Using the librdkafka extension 5

3 Operational Tools 7

4 What happened to Samsa? 9

5 PyKafka or kafka-python? 11

6 Contributing 13

7 Support 15

Python Module Index 67

i

ii

pykafka, Release 2.6.1.dev1

PyKafka is a cluster-aware Kafka>=0.8.2 client for Python. It includes Python implementations of Kafka producers
and consumers, which are optionally backed by a C extension built on librdkafka, and runs under Python 2.7+, Python
3.4+, and PyPy.

PyKafka’s primary goal is to provide a similar level of abstraction to the JVM Kafka client using idioms familiar to
Python programmers and exposing the most Pythonic API possible.

You can install PyKafka from PyPI with

$ pip install pykafka

Full documentation and usage examples for PyKafka can be found on readthedocs.

You can install PyKafka for local development and testing by cloning this repository and running

$ python setup.py develop

Contents 1

https://github.com/edenhill/librdkafka
https://github.com/apache/kafka/tree/0.8.2/clients/src/main/java/org/apache/kafka
http://pykafka.readthedocs.org/en/latest/

pykafka, Release 2.6.1.dev1

2 Contents

CHAPTER 1

Getting Started

Assuming you have at least one Kafka instance running on localhost, you can use PyKafka to connect to it.

>>> from pykafka import KafkaClient
>>> client = KafkaClient(hosts="127.0.0.1:9092,127.0.0.1:9093,...")

Or, for a TLS connection, you might write (and also see SslConfig docs for further details):

>>> from pykafka import KafkaClient, SslConfig
>>> config = SslConfig(cafile='/your/ca.cert',
... certfile='/your/client.cert', # optional
... keyfile='/your/client.key', # optional
... password='unlock my client key please') # optional
>>> client = KafkaClient(hosts="127.0.0.1:<ssl-port>,...",
... ssl_config=config)

If the cluster you’ve connected to has any topics defined on it, you can list them with:

>>> client.topics
{'my.test': <pykafka.topic.Topic at 0x19bc8c0 (name=my.test)>}
>>> topic = client.topics['my.test']

Once you’ve got a Topic, you can create a Producer for it and start producing messages.

>>> with topic.get_sync_producer() as producer:
... for i in range(4):
... producer.produce('test message ' + str(i ** 2))

The example above would produce to kafka synchronously - the call only returns after we have confirmation that the
message made it to the cluster.

To achieve higher throughput, we recommend using the Producer in asynchronous mode, so that produce() calls
will return immediately and the producer may opt to send messages in larger batches. You can still obtain delivery
confirmation for messages, through a queue interface which can be enabled by setting delivery_reports=True.
Here’s a rough usage example:

3

pykafka, Release 2.6.1.dev1

>>> with topic.get_producer(delivery_reports=True) as producer:
... count = 0
... while True:
... count += 1
... producer.produce('test msg', partition_key='{}'.format(count))
... if count % 10 ** 5 == 0: # adjust this or bring lots of RAM ;)
... while True:
... try:
... msg, exc = producer.get_delivery_report(block=False)
... if exc is not None:
... print 'Failed to deliver msg {}: {}'.format(
... msg.partition_key, repr(exc))
... else:
... print 'Successfully delivered msg {}'.format(
... msg.partition_key)
... except Queue.Empty:
... break

Note that the delivery report queue is thread-local: it will only serve reports for messages which were produced from
the current thread. Also, if you’re using delivery_reports=True, failing to consume the delivery report queue will
cause PyKafka’s memory usage to grow unbounded.

You can also consume messages from this topic using a Consumer instance.

>>> consumer = topic.get_simple_consumer()
>>> for message in consumer:
... if message is not None:
... print message.offset, message.value
0 test message 0
1 test message 1
2 test message 4
3 test message 9

This SimpleConsumer doesn’t scale - if you have two SimpleConsumers consuming the same topic, they will receive
duplicate messages. To get around this, you can use the BalancedConsumer.

>>> balanced_consumer = topic.get_balanced_consumer(
... consumer_group='testgroup',
... auto_commit_enable=True,
... zookeeper_connect='myZkClusterNode1.com:2181,myZkClusterNode2.com:2181/
→˓myZkChroot'
...)

You can have as many BalancedConsumer instances consuming a topic as that topic has partitions. If they are all
connected to the same zookeeper instance, they will communicate with it to automatically balance the partitions
between themselves.

You can also use the Kafka 0.9 Group Membership API with the managed keyword argument on
get_balanced_consumer.

4 Chapter 1. Getting Started

CHAPTER 2

Using the librdkafka extension

PyKafka includes a C extension that makes use of librdkafka to speed up producer and consumer operation. To use
the librdkafka extension, you need to make sure the header files and shared library are somewhere where python
can find them, both when you build the extension (which is taken care of by setup.py develop) and at run
time. Typically, this means that you need to either install librdkafka in a place conventional for your system, or
declare C_INCLUDE_PATH, LIBRARY_PATH, and LD_LIBRARY_PATH in your shell environment to point to the
installation location of the librdkafka shared objects. You can find this location with locate librdkafka.so.

After that, all that’s needed is that you pass an extra parameter use_rdkafka=True to topic.
get_producer(), topic.get_simple_consumer(), or topic.get_balanced_consumer(). Note
that some configuration options may have different optimal values; it may be worthwhile to consult librdkafka’s con-
figuration notes for this.

We currently test against librdkafka 0.9.1 only. Note that use on pypy is not recommended at this time; the producer
is certainly expected to crash.

5

https://github.com/edenhill/librdkafka/blob/0.9.1/CONFIGURATION.md
https://github.com/edenhill/librdkafka/blob/0.9.1/CONFIGURATION.md
https://github.com/edenhill/librdkafka/releases/tag/0.9.1

pykafka, Release 2.6.1.dev1

6 Chapter 2. Using the librdkafka extension

CHAPTER 3

Operational Tools

PyKafka includes a small collection of CLI tools that can help with common tasks related to the administration of a
Kafka cluster, including offset and lag monitoring and topic inspection. The full, up-to-date interface for these tools
can be fould by running

$ python cli/kafka_tools.py --help

or after installing PyKafka via setuptools or pip:

$ kafka-tools --help

7

https://github.com/Parsely/pykafka/blob/master/pykafka/cli/kafka_tools.py

pykafka, Release 2.6.1.dev1

8 Chapter 3. Operational Tools

CHAPTER 4

What happened to Samsa?

This project used to be called samsa. It has been renamed PyKafka and has been fully overhauled to support Kafka
0.8.2. We chose to target 0.8.2 because the offset Commit/Fetch API stabilized on that release.

The Samsa PyPI package will stay up for the foreseeable future and tags for previous versions will always be available
in this repo.

9

https://pypi.python.org/pypi/samsa/0.3.11

pykafka, Release 2.6.1.dev1

10 Chapter 4. What happened to Samsa?

CHAPTER 5

PyKafka or kafka-python?

These are two different projects. See the discussion here for comparisons between the two projects.

11

https://github.com/Parsely/pykafka/issues/334

pykafka, Release 2.6.1.dev1

12 Chapter 5. PyKafka or kafka-python?

CHAPTER 6

Contributing

If you’re interested in contributing code to PyKafka, a good place to start is the “help wanted” issue tag. We also
recommend taking a look at the contribution guide.

13

https://github.com/Parsely/pykafka/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22
https://github.com/Parsely/pykafka/blob/master/CONTRIBUTING.rst

pykafka, Release 2.6.1.dev1

14 Chapter 6. Contributing

CHAPTER 7

Support

If you need help using PyKafka or have found a bug, please open a github issue or use the Google Group.

Help Documents

PyKafka Usage Guide

This document contains prose explanations and examples of common patterns of PyKafka usage.

Consumer Patterns

Setting the initial offset

This section applies to both the SimpleConsumer and the BalancedConsumer.

When a PyKafka consumer starts fetching messages from a topic, its starting position in the log is defined by two
keyword arguments: auto_offset_reset and reset_offset_on_start.

consumer = topic.get_simple_consumer(
consumer_group="mygroup",
auto_offset_reset=OffsetType.EARLIEST,
reset_offset_on_start=False

)

The starting offset is also affected by whether or not the Kafka cluster holds any previously committed offsets for each
consumer group/topic/partition set. In this document, a “new” group/topic/partition set is one for which Kafka does
not hold any previously committed offsets, and an “existing” set is one for which Kafka does.

The consumer’s initial behavior can be summed up by these rules:

• For any new group/topic/partitions, message consumption will start from auto_offset_reset. This is true inde-
pendent of the value of reset_offset_on_start.

15

https://github.com/Parsely/pykafka/issues
https://groups.google.com/forum/#!forum/pykafka-user

pykafka, Release 2.6.1.dev1

• For any existing group/topic/partitions, assuming reset_offset_on_start=False, consumption will start from the
offset immediately following the last committed offset (if the last committed offset was 4, consumption starts
at 5). If reset_offset_on_start=True, consumption starts from auto_offset_reset. If there is no committed offset,
the group/topic/partition is considered new.

Put another way: if reset_offset_on_start=True, consumption will start from auto_offset_reset. If it is False, where
consumption starts is dependent on the existence of committed offsets for the group/topic/partition in question.

Examples:

assuming "mygroup" has no committed offsets

starts from the latest available offset
consumer = topic.get_simple_consumer(

consumer_group="mygroup",
auto_offset_reset=OffsetType.LATEST

)
consumer.consume()
consumer.commit_offsets()

starts from the last committed offset
consumer_2 = topic.get_simple_consumer(

consumer_group="mygroup"
)

starts from the earliest available offset
consumer_3 = topic.get_simple_consumer(

consumer_group="mygroup",
auto_offset_reset=OffsetType.EARLIEST,
reset_offset_on_start=True

)

This behavior is based on the auto.offset.reset section of the Kafka documentation.

Producer Patterns

TODO

Kafka 0.9 Roadmap for PyKafka

Date: November 20, 2015

Quick summary

The current stable version of Kafka is 0.8.2. This is meant to run against the latest Zookeeper versions, e.g. 3.4.6.

The latest releases of pykafka target 0.8.2 specifically; the Python code is not backwards compatible with 0.8.1 due to
changes in what is known as Offset Commit/Fetch API, which pykafka uses to simplify the offset management APIs
and standardize them with other clients that talk to Kafka.

The 0.8.2 release will likely be the most stable Kafka broker to use in production for the next couple of months.
However, as we will discuss later, there is a specific bug in Kafka brokers that was fixed in 0.9.0 that we may find
advantageous to backport to 0.8.2.

Meanwhile, 0.9.0 is “around the corner” (currently in release candidate form) and introduces, yet again, a brand new
consumer API, which we need to track and wrap in pykafka. But for that to stabilize will take some time.

16 Chapter 7. Support

http://kafka.apache.org/documentation.html

pykafka, Release 2.6.1.dev1

SimpleConsumer vs BalancedConsumer

Why does pykafka exist? That’s a question I sometimes hear from people, especially since there are alternative
implementations of the Kafka protocol floating around in the Python community, notably kafka-python.

One part of the reason pykafka exists is to build a more Pythonic API for working with Kafka that supports every
major Python interpreter (Python 2/3, PyPy) and every single Kafka feature. We also have an interest in making Kafka
consumers fast, with C optimizations for protocol speedups. But the real reason it exists is to implement a scalable
and reliable BalancedConsumer implementation atop Kafka and Zookeeper. This was missing from any Kafka and
Python project, and we (and many other users) desperately needed it to use Kafka in the way it is meant to be used.

Since there is some confusion on this, let’s do a crystal clear discussion of the differences between these two consumer
types.

SimpleConsumer communicates directly with a Kafka broker to consume a Kafka topic, and takes “ownership” of
100% of the partitions reported for that topic. It does round-robin consumption of messages from those partitions,
while using the aforementioned Commit/Fetch API to manage offsets. Under the hood, the Kafka broker talks to
Zookeeper to maintain the offset state.

The main problems with SimpleConsumer: scalability, parallelism, and high availability. If you have a busy topic
with lots of partitions, a SimpleConsumer may not be able to keep up, and your offset lag (as reported by kafka-tools)
will constantly be behind, or worse, may grow over time. You may also have code that needs to react to messages,
and that code may be CPU-bound, so you may be seeking to achieve multi-core or multi-node parallelism. Since
a SimpleConsumer has no coordination mechanism, you have no options here: multiple SimpleConsumer instances
reading from the same topic will read the same messages from that topic – that is, the data won’t be spread evenly
among the consumers. Finally, there is the availability concern. If your SimpleConsumer dies, your pipeline dies.
You’d ideally like to have several consumers such that the death of one does not result in the death of your pipeline.

One other side note related to using Kafka in Storm, since that’s a common use case. Typically Kafka data enters a
Storm topology via a Spout written against pykafka’s API. If that Spout makes use of a SimpleConsumer, you can
only set that Spout’s parallelism level to 1 – a parallel Spout will emit duplicate tuples into your topology!

So, now let’s discuss BalancedConsumer and how it solves these problems. Instead of taking ownership of 100%
partitions upon consumption of a topic, a BalancedConsumer in Kafka 0.8.2 coordinates the state for several consumers
who “share” a single topic by talking to the Kafka broker and directly to Zookeeper. It figures this out by registering a
“consumer group ID”, which is an identifier associated with several consumer processes that are all eating data from
the same topic, in a balanced manner.

The following discussion of the BalancedConsumer operation is very simplified and high-level – it’s not exactly how
it works. But it’ll serve to illustrate the idea. Let’s say you have 10 partitions for a given topic. A BalancedConsumer
connects asks the cluster, “what partitions are available?”. The cluster replies, “10”. So now that consumer takes
“ownership” of 100% of the partitions, and starts consuming. At this moment, the BalancedConsumer is operating
similarly to a SimpleConsumer.

Then a second BalancedConsumer connects and the cluster, “which partitions are available? Cluster replies, “0”,
and asks the BalancedConsumer to wait a second. It now initiates a “partition rebalancing”. This is a fancy dance
between Zookeeper and Kafka, but the end result is that 5 partitions get “owned” by consumer A and 5 get “owned”
by consumer B. The original consumer receives a notification that the partition balancing has changed, so it now
consumes from fewer partitions. Meanwhile, the second BalancedConsumer now gets a new notification: “5” is the
number of partitions it can now own. At this point, 50% of the stream is being consumed by consumer A, and 50% by
consumer B.

You can see where this goes. A third, fourth, fifth, or sixth BalancedConsumer could join the group. This would split
up the partitions yet further. However, note – we mentioned that the total number of partitions for this topic was 10.
Thus, though balancing will work, it will only work up to the number of total partitions available for a topic. That is,
if we had 11 BalancedConsumers in this consumer group, we’d have one idle consumer and 10 active consumers, with
the active ones only consuming 1 partition each.

7.1. Help Documents 17

https://github.com/mumrah/kafka-python

pykafka, Release 2.6.1.dev1

The good news is, it’s very typical to run Kafka topics with 20, 50, or even 100 partitions per topic, and this typically
provides enough parallelism and availability for almost any need.

Finally, availability is provided with the same mechanism. If you unplug a BalancedConsumer, its partitions are
returned to the group, and other group members can take ownership. This is especially powerful in a Storm topology,
where a Spout using a BalancedConsumer might have parallelism of 10 or 20, and single Spout instance failures would
trigger rebalancing automatically.

Pure Python vs rdkafka

A commonly used Kafka utility is kafkacat, which is written by Magnus Edenhill. It is written in C and makes use
of the librdkafka library, which is a pure C wrapper for the Kafka protocol that has been benchmarked to support 3
million messages per second on the consumer side. A member of the Parse.ly team has written a pykafka binding
for this library which serves two purposes: a) speeding up Python consumers and b) providing an alternative protocol
implementation that allows us to isolate protocol-level bugs.

Note that on the consumer side, librdkafka only handles direct communication with the Kafka broker. Therefore, Bal-
ancedConsumer still makes use of pykafka’s pure Python Zookeeper handling code to implement partition rebalancing
among consumers.

Under the hood, librdkafka is wrapped using Python’s C extension API, therefore it adds a little C wrapper code to
pykafka’s codebase. Building this C extension requires that librdkafka is already built and installed on your machine
(local or production).

By the end of November, rdkafka will be a fully supported option of pykafka. This means SimpleConsumers can
be sped up to handle larger streams without rebalancing, and it also means BalancedConsumer’s get better per-core
or per-process utilization. Making use of this protocol is as simple as passing a use_rdkafka=True flag to the
appropriate consumer or producer creation functions.

Compatibility Matrix

Kafka lacks a coherent release management process, which is one of the worst parts of the project. Minor dot-version
releases have dramatically changed client protocols, thus resembling major version changes to client teams working
on projects like pykafka. To help sort through the noise, here is a compatibility matrix for Kafka versions of whether
we have protocol support for these versions in latest stable versions of our consumer/producer classes:

Kafka version pykafka? rdkafka?
0.8.1 No No
0.8.2 Yes Yes
0.9.0 Planned Planned

Note that 0.9.0.0 is currently in “release candidate” stage as of November 2015.

Core Kafka Issues On Our Radar

There are several important Kafka core issues that are on our radar and that have changed things dramatically (hope-
fully for the better) in the new Kafka 0.9.0 release version. These are summarized in this table:

Issue 0.8.2 0.9.0 Link?
New Consumer API N/A Added KAFKA-1328
New Consumer API Extras N/A In Flux KAFKA-1326
Security/SSL N/A Added KAFKA-1682
Broker/ZK Crash Bug Fixed KAFKA-1387
Documentation “Minimal” “Improved” New Docs

Let’s focus on three areas here: new consumer API, security, and broker/ZK crash.

18 Chapter 7. Support

https://github.com/edenhill/kafkacat
https://github.com/edenhill/librdkafka
https://issues.apache.org/jira/browse/KAFKA-1328
https://issues.apache.org/jira/browse/KAFKA-1326
https://issues.apache.org/jira/browse/KAFKA-1682
https://issues.apache.org/jira/browse/KAFKA-1387
http://kafka.apache.org/090/documentation.html

pykafka, Release 2.6.1.dev1

New Consumer API

One of the biggest new features of Kafka 0.9.0 is a brand new Consumer API. The good news may be that despite
introducing this new API, they may still support their “old” APIs that were stabilized in Kafka 0.8.2. We are going to
explore this as this would provide a smoother upgrade path for pykafka users for certain.

The main difference for this new API is moving more of the BalancedConsumer partition rebalancing logic into the
broker itself. This would certainly be a good idea to standardize how BalancedConsumers work across programming
languages, but we don’t have a lot of confidence that this protocol is bug-free at the moment. The Kafka team even
describes their own 0.9.0 consumer as being “beta quality”.

Security/SSL

This is one of Kafka’s top requests. To provide secure access to Kafka topics, people have had to use the typical IP
whitelisting and VPN hacks, which is problematic since they can often impact the overall security of a system, impact
performance, and are operationally complex to maintain.

The Kafka 0.9.0 release includes a standard mechanism for doing SSL-based security in communicating with Kafka
brokers. We’ll need to explore what the requirements and limitations are of this scheme to see if it can be supported
directly by pykafka.

Broker/ZK Crash

This is perhaps the most annoying issue regarding this new release. We have several reports from the community of
Kafka brokers that crash as a result of a coordination issue with Zookeeper. A bug fix was worked on for several
months and a patched build of 0.8.1 fixed the issue permanently for some users, but because the Kafka community
cancelled a 0.8.3 release, favoring 0.9.0 instead, no patched build of 0.8.2 was ever created. This issue is fixed in 0.9.0,
however.

The Way Forward

We want pykafka to support 0.8.2 and 0.9.0 in a single source tree. We’d like the rdkafka implementation to have
similar support. We think this will likely be supported without using Kafka’s 0.9.0 “New Consumer API”. This
will give users a 0.9.0 upgrade path for stability (fixing the Broker/ZK Crash, and allowing use of SimpleConsumer,
BalancedConsumer, and C-optimized versions with rdkafka).

We don’t know, yet, whether the new Security/SSL scheme requires use of the new Consumer APIs. If so, the latter
may be a blocker for the former. We will likely discover the answer to this in November 2015.

A tracker issue for Kafka 0.9.0 support in pykafka was opened, and that’s where discussion should go for now.

API Documentation

Note: PyKafka uses the convention that all class attributes prefixed with an underscore are considered private. They
are not a part of the public interface, and thus are subject to change without a major version increment at any time.
Class attributes not prefixed with an underscore are treated as a fixed public API and are only changed in major
version increments.

7.2. API Documentation 19

https://github.com/Parsely/pykafka/issues/349

pykafka, Release 2.6.1.dev1

pykafka.balancedconsumer

class pykafka.balancedconsumer.BalancedConsumer(topic, cluster, consumer_group,
fetch_message_max_bytes=1048576,
num_consumer_fetchers=1,
auto_commit_enable=False,
auto_commit_interval_ms=60000,
queued_max_messages=2000,
fetch_min_bytes=1,
fetch_error_backoff_ms=500,
fetch_wait_max_ms=100, off-
sets_channel_backoff_ms=1000,
offsets_commit_max_retries=5,
auto_offset_reset=-2,
consumer_timeout_ms=-1, re-
balance_max_retries=5, re-
balance_backoff_ms=2000,
zookeeper_connection_timeout_ms=6000,
zookeeper_connect=‘127.0.0.1:2181’,
zookeeper=None, auto_start=True,
reset_offset_on_start=False,
post_rebalance_callback=None,
use_rdkafka=False, com-
pacted_topic=False)

Bases: object

A self-balancing consumer for Kafka that uses ZooKeeper to communicate with other balancing consumers.

Maintains a single instance of SimpleConsumer, periodically using the consumer rebalancing algorithm to reas-
sign partitions to this SimpleConsumer.

__init__(topic, cluster, consumer_group, fetch_message_max_bytes=1048576,
num_consumer_fetchers=1, auto_commit_enable=False, auto_commit_interval_ms=60000,
queued_max_messages=2000, fetch_min_bytes=1, fetch_error_backoff_ms=500,
fetch_wait_max_ms=100, offsets_channel_backoff_ms=1000, off-
sets_commit_max_retries=5, auto_offset_reset=-2, consumer_timeout_ms=-
1, rebalance_max_retries=5, rebalance_backoff_ms=2000,
zookeeper_connection_timeout_ms=6000, zookeeper_connect=‘127.0.0.1:2181’,
zookeeper=None, auto_start=True, reset_offset_on_start=False,
post_rebalance_callback=None, use_rdkafka=False, compacted_topic=False)

Create a BalancedConsumer instance

Parameters

• topic (pykafka.topic.Topic) – The topic this consumer should consume

• cluster (pykafka.cluster.Cluster) – The cluster to which this consumer
should connect

• consumer_group (bytes) – The name of the consumer group this consumer should
join.

• fetch_message_max_bytes (int) – The number of bytes of messages to attempt
to fetch with each fetch request

• num_consumer_fetchers (int) – The number of workers used to make FetchRe-
quests

• auto_commit_enable (bool) – If true, periodically commit to kafka the offset of

20 Chapter 7. Support

pykafka, Release 2.6.1.dev1

messages already fetched by this consumer. This also requires that consumer_group is not
None.

• auto_commit_interval_ms (int) – The frequency (in milliseconds) at which the
consumer’s offsets are committed to kafka. This setting is ignored if auto_commit_enable
is False.

• queued_max_messages (int) – The maximum number of messages buffered for con-
sumption in the internal pykafka.simpleconsumer.SimpleConsumer

• fetch_min_bytes (int) – The minimum amount of data (in bytes) that the server
should return for a fetch request. If insufficient data is available, the request will block
until sufficient data is available.

• fetch_error_backoff_ms (int) – UNUSED. See pykafka.
simpleconsumer.SimpleConsumer.

• fetch_wait_max_ms (int) – The maximum amount of time (in milliseconds) that
the server will block before answering a fetch request if there isn’t sufficient data to im-
mediately satisfy fetch_min_bytes.

• offsets_channel_backoff_ms (int) – Backoff time to retry failed offset com-
mits and fetches.

• offsets_commit_max_retries (int) – The number of times the offset commit
worker should retry before raising an error.

• auto_offset_reset (pykafka.common.OffsetType) – What to do if an offset
is out of range. This setting indicates how to reset the consumer’s internal offset counter
when an OffsetOutOfRangeError is encountered.

• consumer_timeout_ms (int) – Amount of time (in milliseconds) the consumer may
spend without messages available for consumption before returning None.

• rebalance_max_retries (int) – The number of times the rebalance should retry
before raising an error.

• rebalance_backoff_ms (int) – Backoff time (in milliseconds) between retries dur-
ing rebalance.

• zookeeper_connection_timeout_ms (int) – The maximum time (in millisec-
onds) that the consumer waits while establishing a connection to zookeeper.

• zookeeper_connect (str) – Comma-separated (ip1:port1,ip2:port2) strings indicat-
ing the zookeeper nodes to which to connect.

• zookeeper (kazoo.client.KazooClient) – A KazooClient connected to a
Zookeeper instance. If provided, zookeeper_connect is ignored.

• auto_start (bool) – Whether the consumer should begin communicating with
zookeeper after __init__ is complete. If false, communication can be started with start().

• reset_offset_on_start (bool) – Whether the consumer should reset its internal
offset counter to self._auto_offset_reset and commit that offset immediately upon starting
up

• post_rebalance_callback (function) – A function to be called when a re-
balance is in progress. This function should accept three arguments: the pykafka.
balancedconsumer.BalancedConsumer instance that just completed its rebal-
ance, a dict of partitions that it owned before the rebalance, and a dict of partitions it owns
after the rebalance. These dicts map partition ids to the most recently known offsets for
those partitions. This function can optionally return a dictionary mapping partition ids to

7.2. API Documentation 21

pykafka, Release 2.6.1.dev1

offsets. If it does, the consumer will reset its offsets to the supplied values before continu-
ing consumption. Note that the BalancedConsumer is in a poorly defined state at the time
this callback runs, so that accessing its properties (such as held_offsets or partitions) might
yield confusing results. Instead, the callback should really rely on the provided partition-id
dicts, which are well-defined.

• use_rdkafka (bool) – Use librdkafka-backed consumer if available

• compacted_topic (bool) – Set to read from a compacted topic. Forces consumer to
use less stringent message ordering logic because compacted topics do not provide offsets
in strict incrementing order.

__iter__()
Yield an infinite stream of messages until the consumer times out

__weakref__
list of weak references to the object (if defined)

_add_partitions(partitions)
Add partitions to the zookeeper registry for this consumer.

Parameters partitions (Iterable of pykafka.partition.Partition) – The parti-
tions to add.

_add_self()
Register this consumer in zookeeper.

_build_watch_callback(fn, proxy)
Return a function that’s safe to use as a ChildrenWatch callback

Fixes the issue from https://github.com/Parsely/pykafka/issues/345

_decide_partitions(participants, consumer_id=None)
Decide which partitions belong to this consumer.

Uses the consumer rebalancing algorithm described here https://kafka.apache.org/documentation/#impl_
consumerrebalance

It is very important that the participants array is sorted, since this algorithm runs on each consumer and
indexes into the same array. The same array index operation must return the same result on each consumer.

Parameters

• participants (Iterable of bytes) – Sorted list of ids of all other consumers in this
consumer group.

• consumer_id – The ID of the consumer for which to generate a partition assignment.
Defaults to self._consumer_id

_get_held_partitions()
Build a set of partitions zookeeper says we own

_get_internal_consumer(partitions=None, start=True)
Instantiate a SimpleConsumer for internal use.

If there is already a SimpleConsumer instance held by this object, disable its workers and mark it for
garbage collection before creating a new one.

_get_participants()
Use zookeeper to get the other consumers of this topic.

Returns A sorted list of the ids of other consumers of this consumer’s topic

22 Chapter 7. Support

https://github.com/Parsely/pykafka/issues/345
https://kafka.apache.org/documentation/#impl_consumerrebalance
https://kafka.apache.org/documentation/#impl_consumerrebalance

pykafka, Release 2.6.1.dev1

_partitions
Convenient shorthand for set of partitions internally held

_path_from_partition(p)
Given a partition, return its path in zookeeper.

_path_self
Path where this consumer should be registered in zookeeper

_raise_worker_exceptions()
Raises exceptions encountered on worker threads

_rebalance()
Start the rebalancing process for this consumer

This method is called whenever a zookeeper watch is triggered.

_remove_partitions(partitions)
Remove partitions from the zookeeper registry for this consumer.

Parameters partitions (Iterable of pykafka.partition.Partition) – The parti-
tions to remove.

_set_watches()
Set watches in zookeeper that will trigger rebalances.

Rebalances should be triggered whenever a broker, topic, or consumer znode is changed in zookeeper. This
ensures that the balance of the consumer group remains up-to-date with the current state of the cluster.

_setup_internal_consumer(partitions=None, start=True)
Instantiate an internal SimpleConsumer instance

_setup_zookeeper(zookeeper_connect, timeout)
Open a connection to a ZooKeeper host.

Parameters

• zookeeper_connect (str) – The ‘ip:port’ address of the zookeeper node to which
to connect.

• timeout (int) – Connection timeout (in milliseconds)

_update_member_assignment()
Decide and assign new partitions for this consumer

commit_offsets()
Commit offsets for this consumer’s partitions

Uses the offset commit/fetch API

consume(block=True)
Get one message from the consumer

Parameters block (bool) – Whether to block while waiting for a message

held_offsets
Return a map from partition id to held offset for each partition

partitions
A list of the partitions that this consumer consumes

reset_offsets(partition_offsets=None)
Reset offsets for the specified partitions

7.2. API Documentation 23

pykafka, Release 2.6.1.dev1

Issue an OffsetRequest for each partition and set the appropriate returned offset in the consumer’s internal
offset counter.

Parameters partition_offsets (Sequence of tuples of the form (pykafka.
partition.Partition, int)) – (partition, timestamp_or_offset) pairs to reset where
partition is the partition for which to reset the offset and timestamp_or_offset is EITHER
the timestamp of the message whose offset the partition should have OR the new offset the
partition should have

NOTE: If an instance of timestamp_or_offset is treated by kafka as an invalid offset timestamp,
this function directly sets the consumer’s internal offset counter for that partition to that instance
of timestamp_or_offset. On the next fetch request, the consumer attempts to fetch messages start-
ing from that offset. See the following link for more information on what kafka treats as a
valid offset timestamp: https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+
Protocol#AGuideToTheKafkaProtocol-OffsetRequest

start()
Open connections and join a consumer group.

stop()
Close the zookeeper connection and stop consuming.

This method should be called as part of a graceful shutdown process.

topic
The topic this consumer consumes

pykafka.broker

Author: Keith Bourgoin, Emmett Butler

class pykafka.broker.Broker(id_, host, port, handler, socket_timeout_ms, off-
sets_channel_socket_timeout_ms, buffer_size=1048576,
source_host=’‘, source_port=0, ssl_config=None, bro-
ker_version=‘0.9.0’)

Bases: object

A Broker is an abstraction over a real kafka server instance. It is used to perform requests to these servers.

__init__(id_, host, port, handler, socket_timeout_ms, offsets_channel_socket_timeout_ms,
buffer_size=1048576, source_host=’‘, source_port=0, ssl_config=None, bro-
ker_version=‘0.9.0’)

Create a Broker instance.

Parameters

• id (int) – The id number of this broker

• host (str) – The host address to which to connect. An IP address or a DNS name

• port (int) – The port on which to connect

• handler (pykafka.handlers.Handler) – A Handler instance that will be used to
service requests and responses

• socket_timeout_ms (int) – The socket timeout for network requests

• offsets_channel_socket_timeout_ms (int) – The socket timeout for network
requests on the offsets channel

• buffer_size (int) – The size (bytes) of the internal buffer used to receive network
responses

24 Chapter 7. Support

https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetRequest
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetRequest

pykafka, Release 2.6.1.dev1

• source_host (str) – The host portion of the source address for socket connections

• source_port (int) – The port portion of the source address for socket connections

• ssl_config (pykafka.connection.SslConfig) – Config object for SSL con-
nection

__weakref__
list of weak references to the object (if defined)

_get_unique_req_handler(connection_id)
Return a RequestHandler instance unique to the given connection_id

In some applications, for example the Group Membership API, requests running in the same process must
be interleaved. When both of these requests are using the same RequestHandler instance, the requests are
queued and the interleaving semantics are not upheld. This method behaves identically to self._req_handler
if there is only one connection_id per KafkaClient. If a single KafkaClient needs to use more than one
connection_id, this method maintains a dictionary of connections unique to those ids.

Parameters connection_id (str) – The unique identifier of the connection to return

commit_consumer_group_offsets(consumer_group, consumer_group_generation_id, con-
sumer_id, preqs)

Commit offsets to Kafka using the Offset Commit/Fetch API

Commit the offsets of all messages consumed so far by this consumer group with the Offset Commit/Fetch
API

Based on Step 2 here https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+
consumer+offsets+in+Kafka

Parameters

• consumer_group (str) – the name of the consumer group for which to commit offsets

• consumer_group_generation_id (int) – The generation ID for this consumer
group

• consumer_id (str) – The identifier for this consumer group

• preqs (Iterable of pykafka.protocol.PartitionOffsetCommitRequest) –
Requests indicating the partitions for which offsets should be committed

connect()
Establish a connection to the broker server.

Creates a new pykafka.connection.BrokerConnection and a new pykafka.handlers.
RequestHandler for this broker

connect_offsets_channel()
Establish a connection to the Broker for the offsets channel

Creates a new pykafka.connection.BrokerConnection and a new pykafka.handlers.
RequestHandler for this broker’s offsets channel

connected
Returns True if this object’s main connection to the Kafka broker is active

fetch_consumer_group_offsets(consumer_group, preqs)
Fetch the offsets stored in Kafka with the Offset Commit/Fetch API

Based on Step 2 here https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+
consumer+offsets+in+Kafka

Parameters

7.2. API Documentation 25

https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+consumer+offsets+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+consumer+offsets+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+consumer+offsets+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+consumer+offsets+in+Kafka

pykafka, Release 2.6.1.dev1

• consumer_group (str) – the name of the consumer group for which to fetch offsets

• preqs (Iterable of pykafka.protocol.PartitionOffsetFetchRequest) –
Requests indicating the partitions for which offsets should be fetched

classmethod from_metadata(metadata, handler, socket_timeout_ms, off-
sets_channel_socket_timeout_ms, buffer_size=65536, source_host=’‘,
source_port=0, ssl_config=None, broker_version=‘0.9.0’)

Create a Broker using BrokerMetadata

Parameters

• metadata (pykafka.protocol.BrokerMetadata.) – Metadata that describes
the broker.

• handler (pykafka.handlers.Handler) – A Handler instance that will be used to
service requests and responses

• socket_timeout_ms (int) – The socket timeout for network requests

• offsets_channel_socket_timeout_ms (int) – The socket timeout for network
requests on the offsets channel

• buffer_size (int) – The size (bytes) of the internal buffer used to receive network
responses

• source_host (str) – The host portion of the source address for socket connections

• source_port (int) – The port portion of the source address for socket connections

• ssl_config (pykafka.connection.SslConfig) – Config object for SSL con-
nection

handler
The primary pykafka.handlers.RequestHandler for this broker

This handler handles all requests outside of the commit/fetch api

heartbeat(connection_id, consumer_group, generation_id, member_id)
Send a HeartbeatRequest

Parameters

• connection_id (str) – The unique identifier of the connection on which to make this
request

• consumer_group (bytes) – The name of the consumer group to which this consumer
belongs

• generation_id (int) – The current generation for the consumer group

• member_id (bytes) – The ID of the consumer sending this heartbeat

host
The host to which this broker is connected

id
The broker’s ID within the Kafka cluster

join_group(connection_id, consumer_group, member_id, topic_name)
Send a JoinGroupRequest

Parameters

• connection_id (str) – The unique identifier of the connection on which to make this
request

26 Chapter 7. Support

pykafka, Release 2.6.1.dev1

• consumer_group (bytes) – The name of the consumer group to join

• member_id (bytes) – The ID of the consumer joining the group

• topic_name (str) – The name of the topic to which to connect, used in protocol meta-
data

leave_group(connection_id, consumer_group, member_id)
Send a LeaveGroupRequest

Parameters

• connection_id (str) – The unique identifier of the connection on which to make this
request

• consumer_group (bytes) – The name of the consumer group to leave

• member_id (bytes) – The ID of the consumer leaving the group

offsets_channel_connected
Returns True if this object’s offsets channel connection to the Kafka broker is active

offsets_channel_handler

The offset channel pykafka.handlers.RequestHandler for this broker

This handler handles all requests that use the commit/fetch api

port
The port where the broker is available

sync_group(connection_id, consumer_group, generation_id, member_id, group_assignment)
Send a SyncGroupRequest

Parameters

• connection_id (str) – The unique identifier of the connection on which to make this
request

• consumer_group (bytes) – The name of the consumer group to which this consumer
belongs

• generation_id (int) – The current generation for the consumer group

• member_id (bytes) – The ID of the consumer syncing

• group_assignment (iterable of pykafka.protocol.MemberAssignment) –
A sequence of pykafka.protocol.MemberAssignment instances indicating the
partition assignments for each member of the group. When sync_group is called by a
member other than the leader of the group, group_assignment should be an empty se-
quence.

pykafka.client

Author: Keith Bourgoin, Emmett Butler

class pykafka.client.KafkaClient(hosts=‘127.0.0.1:9092’, zookeeper_hosts=None,
socket_timeout_ms=30000, off-
sets_channel_socket_timeout_ms=10000, use_greenlets=False,
exclude_internal_topics=True, source_address=’‘,
ssl_config=None, broker_version=‘0.9.0’)

Bases: object

A high-level pythonic client for Kafka

7.2. API Documentation 27

pykafka, Release 2.6.1.dev1

NOTE: KafkaClient holds weak references to Topic instances via pykafka.cluster.TopicDict. To
perform operations directly on these topics, such as examining their partition lists, client code must hold a
strong reference to the topics it cares about. If client code doesn’t need to examine Topic instances directly, no
strong references are necessary.

Notes on Zookeeper: Zookeeper is used by kafka and its clients to store several types of information, including
broker host strings, partition ownerships, and depending on your kafka version, consumer offsets. The kafka-
console-* tools rely on zookeeper to discover brokers - this is why you can’t directly specify a broker to these
tools and are required to give a zookeeper host string. In theory, this insulates you as a user of the console tools
from having to care about which specific brokers in your kafka cluster might be accessible at any given time.

In pykafka, the paradigm is slightly different, though the above method is also supported. When you instantiate
a KafkaClient, you can specify either hosts or zookeeper_hosts. hosts is a comma-separated list of brokers to
which to connect, and zookeeper_hosts is a zookeeper connection string. If you specify zookeeper_hosts, it
overrides hosts. Thus you can create a KafkaClient that is connected to your kafka cluster by providing either a
zookeeper or a broker connection string.

As for why the specific components do and don’t require knowledge of the zookeeper cluster, there are some
different reasons. SimpleConsumer, since it does not perform consumption balancing, does not actually require
access to zookeeper at all. Since kafka 0.8.2, consumer offset information is stored by the kafka broker it-
self instead of the zookeeper cluster. The BalancedConsumer, by contrast, requires explicit knowledge of the
zookeeper cluster because it performs consumption balancing. Zookeeper stores the information about which
consumers own which partitions and provides a central repository of that information for all consumers to read.
The BalancedConsumer cannot do what it does without direct access to zookeeper for this reason. Note that the
ManagedBalancedConsumer, which works with kafka 0.9 and above, removes this dependency on zookeeper
from the balanced consumption process by storing partition ownership information in the kafka broker.

The Producer is allowed to send messages to whatever partitions it wants. In pykafka, by default the partition for
each message is chosen randomly to provide an even distribution of messages across partitions. The producer
actually doesn’t do anything that requires information stored in zookeeper, and since the connection to the kafka
cluster is handled by the above-mentioned logic in KafkaClient, it doesn’t need the zookeeper host string at all.

__init__(hosts=‘127.0.0.1:9092’, zookeeper_hosts=None, socket_timeout_ms=30000,
offsets_channel_socket_timeout_ms=10000, use_greenlets=False, ex-
clude_internal_topics=True, source_address=’‘, ssl_config=None, bro-
ker_version=‘0.9.0’)

Create a connection to a Kafka cluster.

Documentation for source_address can be found at https://docs.python.org/2/library/socket.html#socket.
create_connection

Parameters

• hosts (str) – Comma-separated list of kafka hosts to which to connect. If ssl_config is
specified, the ports specified here are assumed to be SSL ports

• zookeeper_hosts (str) – KazooClient-formatted string of ZooKeeper hosts to
which to connect. If not None, this argument takes precedence over hosts

• socket_timeout_ms (int) – The socket timeout (in milliseconds) for network re-
quests

• offsets_channel_socket_timeout_ms (int) – The socket timeout (in mil-
liseconds) when reading responses for offset commit and offset fetch requests.

• use_greenlets (bool) – Whether to perform parallel operations on greenlets instead
of OS threads

• exclude_internal_topics (bool) – Whether messages from internal topics
(specifically, the offsets topic) should be exposed to the consumer.

28 Chapter 7. Support

https://docs.python.org/2/library/socket.html#socket.create_connection
https://docs.python.org/2/library/socket.html#socket.create_connection

pykafka, Release 2.6.1.dev1

• source_address (str ‘host:port’) – The source address for socket connections

• ssl_config (pykafka.connection.SslConfig) – Config object for SSL con-
nection

• broker_version (str) – The protocol version of the cluster being connected to. If
this parameter doesn’t match the actual broker version, some pykafka features may not
work properly.

__weakref__
list of weak references to the object (if defined)

update_cluster()
Update known brokers and topics.

Updates each Topic and Broker, adding new ones as found, with current metadata from the cluster.

pykafka.cluster

class pykafka.cluster.Cluster(hosts, handler, socket_timeout_ms=30000, off-
sets_channel_socket_timeout_ms=10000, ex-
clude_internal_topics=True, source_address=’‘,
zookeeper_hosts=None, ssl_config=None, broker_version=‘0.9.0’)

Bases: object

A Cluster is a high-level abstraction of the collection of brokers and topics that makes up a real kafka cluster.

__init__(hosts, handler, socket_timeout_ms=30000, offsets_channel_socket_timeout_ms=10000, ex-
clude_internal_topics=True, source_address=’‘, zookeeper_hosts=None, ssl_config=None,
broker_version=‘0.9.0’)

Create a new Cluster instance.

Parameters

• hosts (str) – Comma-separated list of kafka hosts to which to connect.

• zookeeper_hosts (str) – KazooClient-formatted string of ZooKeeper hosts to
which to connect. If not None, this argument takes precedence over hosts

• handler (pykafka.handlers.Handler) – The concurrency handler for network
requests.

• socket_timeout_ms (int) – The socket timeout (in milliseconds) for network re-
quests

• offsets_channel_socket_timeout_ms (int) – The socket timeout (in mil-
liseconds) when reading responses for offset commit and offset fetch requests.

• exclude_internal_topics (bool) – Whether messages from internal topics
(specifically, the offsets topic) should be exposed to consumers.

• source_address (str ‘host:port’) – The source address for socket connections

• ssl_config (pykafka.connection.SslConfig) – Config object for SSL con-
nection

• broker_version (str) – The protocol version of the cluster being connected to. If
this parameter doesn’t match the actual broker version, some pykafka features may not
work properly.

__weakref__
list of weak references to the object (if defined)

7.2. API Documentation 29

pykafka, Release 2.6.1.dev1

_get_brokers_from_zookeeper(zk_connect)
Build a list of broker connection pairs from a ZooKeeper host

Parameters zk_connect (str) – The ZooKeeper connect string of the instance to which to
connect

_get_metadata(topics=None)
Get fresh cluster metadata from a broker.

_request_metadata(broker_connects, topics)
Request broker metadata from a set of brokers

Returns the result of the first successful metadata request

Parameters broker_connects (Iterable of two-element sequences of
the format (broker_host, broker_port)) – The set of brokers to which to
attempt to connect

_update_brokers(broker_metadata)
Update brokers with fresh metadata.

Parameters broker_metadata (Dict of {name: metadata} where metadata is pykafka.
protocol.BrokerMetadata and name is str.) – Metadata for all brokers.

brokers
The dict of known brokers for this cluster

get_group_coordinator(consumer_group)
Get the broker designated as the group coordinator for this consumer group.

Based on Step 1 at https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+
consumer+offsets+in+Kafka

Parameters consumer_group (str) – The name of the consumer group for which to find
the offset manager.

get_managed_group_descriptions()
Return detailed descriptions of all managed consumer groups on this cluster

This function only returns descriptions for consumer groups created via the Group Management API,
which pykafka refers to as :class:‘ManagedBalancedConsumer‘s

handler
The concurrency handler for network requests

topics
The dict of known topics for this cluster

NOTE: This dict is an instance of pykafka.cluster.TopicDict, which uses weak references and
lazy evaluation to avoid instantiating unnecessary pykafka.Topic objects. Thus, the values displayed when
printing client.topics on a freshly created pykafka.KafkaClient will be None. This simply means
that the topic instances have not yet been created, but they will be when __getitem__ is called on the
dictionary.

update()
Update known brokers and topics.

pykafka.common

Author: Keith Bourgoin

30 Chapter 7. Support

https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+consumer+offsets+in+Kafka
https://cwiki.apache.org/confluence/display/KAFKA/Committing+and+fetching+consumer+offsets+in+Kafka

pykafka, Release 2.6.1.dev1

class pykafka.common.Message
Bases: object

Message class.

Variables

• response_code – Response code from Kafka

• topic – Originating topic

• payload – Message payload

• key – (optional) Message key

• offset – Message offset

class pykafka.common.CompressionType
Bases: object

Enum for the various compressions supported.

Variables

• NONE – Indicates no compression in use

• GZIP – Indicates gzip compression in use

• SNAPPY – Indicates snappy compression in use

__weakref__
list of weak references to the object (if defined)

class pykafka.common.OffsetType
Bases: object

Enum for special values for earliest/latest offsets.

Variables

• EARLIEST – Indicates the earliest offset available for a partition

• LATEST – Indicates the latest offset available for a partition

__weakref__
list of weak references to the object (if defined)

pykafka.connection

class pykafka.connection.SslConfig(cafile, certfile=None, keyfile=None, password=None)
Bases: object

Config object for SSL connections

This aims to pick optimal defaults for the majority of use cases. If you have special requirements (eg. you
want to enable hostname checking), you may monkey-patch self._wrap_socket (see _legacy_wrap_socket() for
an example) before passing the SslConfig to KafkaClient init, like so:

config = SslConfig(cafile=’/your/ca/file’) config._wrap_socket = config._legacy_wrap_socket()
client = KafkaClient(‘localhost:<ssl-port>’, ssl_config=config)

Alternatively, completely supplanting this class with your own is also simple: if you are not going to be using
the pykafka.rdkafka classes, only a method wrap_socket() is expected (so you can eg. simply pass in a plain
ssl.SSLContext instance instead). The pykafka.rdkafka classes require four further attributes: cafile, certfile,
keyfile, and password (the SslConfig.__init__ docstring explains their meaning)

7.2. API Documentation 31

pykafka, Release 2.6.1.dev1

__init__(cafile, certfile=None, keyfile=None, password=None)
Specify certificates for SSL connection

Parameters

• cafile (str) – Path to trusted CA certificate

• certfile (str) – Path to client certificate

• keyfile (str) – Path to client private-key file

• password (bytes) – Password for private key

__weakref__
list of weak references to the object (if defined)

_legacy_wrap_socket()
Create socket-wrapper on a pre-2.7.9 Python interpreter

wrap_socket(sock)
Wrap a socket in an SSL context (see ssl.wrap_socket)

Parameters socket (socket.socket) – Plain socket

class pykafka.connection.BrokerConnection(host, port, handler, buffer_size=1048576,
source_host=’‘, source_port=0, ssl_config=None)

Bases: object

BrokerConnection thinly wraps a socket.create_connection call and handles the sending and receiving of data
that conform to the kafka binary protocol over that socket.

__del__()
Close this connection when the object is deleted.

__init__(host, port, handler, buffer_size=1048576, source_host=’‘, source_port=0,
ssl_config=None)

Initialize a socket connection to Kafka.

Parameters

• host (str) – The host to which to connect

• port (int) – The port on the host to which to connect. Assumed to be an ssl-endpoint if
(and only if) ssl_config is also provided

• handler (pykafka.handlers.Handler) – The pykafka.handlers.
Handler instance to use when creating a connection

• buffer_size (int) – The size (in bytes) of the buffer in which to hold response data.

• source_host (str) – The host portion of the source address for the socket connection

• source_port (int) – The port portion of the source address for the socket connection

• ssl_config (pykafka.connection.SslConfig) – Config object for SSL con-
nection

__weakref__
list of weak references to the object (if defined)

connect(timeout)
Connect to the broker.

connected
Returns true if the socket connection is open.

32 Chapter 7. Support

pykafka, Release 2.6.1.dev1

disconnect()
Disconnect from the broker.

reconnect()
Disconnect from the broker, then reconnect

request(request)
Send a request over the socket connection

response()
Wait for a response from the broker

pykafka.exceptions

Author: Keith Bourgoin, Emmett Butler

exception pykafka.exceptions.ConsumerStoppedException
Bases: pykafka.exceptions.KafkaException

Indicates that the consumer was stopped when an operation was attempted that required it to be running

exception pykafka.exceptions.GroupAuthorizationFailed
Bases: pykafka.exceptions.ProtocolClientError

Returned by the broker when the client is not authorized to access a particular groupId.

exception pykafka.exceptions.GroupCoordinatorNotAvailable
Bases: pykafka.exceptions.ProtocolClientError

The broker returns this error code for consumer metadata requests or offset commit requests if the offsets topic
has not yet been created.

exception pykafka.exceptions.GroupLoadInProgress
Bases: pykafka.exceptions.ProtocolClientError

The broker returns this error code for an offset fetch request if it is still loading offsets (after a leader change
for that offsets topic partition), or in response to group membership requests (such as heartbeats) when group
metadata is being loaded by the coordinator.

exception pykafka.exceptions.IllegalGeneration
Bases: pykafka.exceptions.ProtocolClientError

Returned from group membership requests (such as heartbeats) when the generation id provided in the request
is not the current generation

exception pykafka.exceptions.InconsistentGroupProtocol
Bases: pykafka.exceptions.ProtocolClientError

Returned in join group when the member provides a protocol type or set of protocols which is not compatible
with the current group.

exception pykafka.exceptions.InvalidMessageError
Bases: pykafka.exceptions.ProtocolClientError

This indicates that a message contents does not match its CRC

exception pykafka.exceptions.InvalidMessageSize
Bases: pykafka.exceptions.ProtocolClientError

The message has a negative size

7.2. API Documentation 33

pykafka, Release 2.6.1.dev1

exception pykafka.exceptions.InvalidSessionTimeout
Bases: pykafka.exceptions.ProtocolClientError

Returned in join group when the requested session timeout is outside of the allowed range on the broker

exception pykafka.exceptions.KafkaException
Bases: exceptions.Exception

Generic exception type. The base of all pykafka exception types.

__weakref__
list of weak references to the object (if defined)

exception pykafka.exceptions.LeaderNotAvailable
Bases: pykafka.exceptions.ProtocolClientError

This error is thrown if we are in the middle of a leadership election and there is currently no leader for this
partition and hence it is unavailable for writes.

exception pykafka.exceptions.MessageSizeTooLarge
Bases: pykafka.exceptions.ProtocolClientError

The server has a configurable maximum message size to avoid unbounded memory allocation. This error is
thrown if the client attempts to produce a message larger than this maximum.

exception pykafka.exceptions.NoBrokersAvailableError
Bases: pykafka.exceptions.KafkaException

Indicates that no brokers were available to the cluster’s metadata update attempts

exception pykafka.exceptions.NoMessagesConsumedError
Bases: pykafka.exceptions.KafkaException

Indicates that no messages were returned from a MessageSet

exception pykafka.exceptions.NotCoordinatorForGroup
Bases: pykafka.exceptions.ProtocolClientError

The broker returns this error code if it receives an offset fetch or commit request for a consumer group that it is
not a coordinator for.

exception pykafka.exceptions.NotLeaderForPartition
Bases: pykafka.exceptions.ProtocolClientError

This error is thrown if the client attempts to send messages to a replica that is not the leader for some partition.
It indicates that the client’s metadata is out of date.

exception pykafka.exceptions.OffsetMetadataTooLarge
Bases: pykafka.exceptions.ProtocolClientError

If you specify a string larger than configured maximum for offset metadata

exception pykafka.exceptions.OffsetOutOfRangeError
Bases: pykafka.exceptions.ProtocolClientError

The requested offset is outside the range of offsets maintained by the server for the given topic/partition.

exception pykafka.exceptions.OffsetRequestFailedError
Bases: pykafka.exceptions.KafkaException

Indicates that OffsetRequests for offset resetting failed more times than the configured maximum

exception pykafka.exceptions.PartitionOwnedError(partition, *args, **kwargs)
Bases: pykafka.exceptions.KafkaException

Indicates a given partition is still owned in Zookeeper.

34 Chapter 7. Support

pykafka, Release 2.6.1.dev1

exception pykafka.exceptions.ProduceFailureError
Bases: pykafka.exceptions.KafkaException

Indicates a generic failure in the producer

exception pykafka.exceptions.ProducerQueueFullError
Bases: pykafka.exceptions.KafkaException

Indicates that one or more of the AsyncProducer’s internal queues contain at least max_queued_messages mes-
sages

exception pykafka.exceptions.ProducerStoppedException
Bases: pykafka.exceptions.KafkaException

Raised when the Producer is used while not running

exception pykafka.exceptions.ProtocolClientError
Bases: pykafka.exceptions.KafkaException

Base class for protocol errors

exception pykafka.exceptions.RdKafkaException
Bases: pykafka.exceptions.KafkaException

Error in rdkafka extension that hasn’t any equivalent pykafka exception

In pykafka.rdkafka._rd_kafka we try hard to emit the same exceptions that the pure pykafka classes emit. This
is a fallback for the few cases where we can’t find a suitable exception

exception pykafka.exceptions.RdKafkaStoppedException
Bases: pykafka.exceptions.RdKafkaException

Consumer or producer handle was stopped

Raised by the C extension, to be translated to ConsumerStoppedException or ProducerStoppedException by the
caller

exception pykafka.exceptions.RebalanceInProgress
Bases: pykafka.exceptions.ProtocolClientError

Returned in heartbeat requests when the coordinator has begun rebalancing the group. This indicates to the
client that it should rejoin the group.

exception pykafka.exceptions.RequestTimedOut
Bases: pykafka.exceptions.ProtocolClientError

This error is thrown if the request exceeds the user-specified time limit in the request.

exception pykafka.exceptions.SocketDisconnectedError
Bases: pykafka.exceptions.KafkaException

Indicates that the socket connecting this client to a kafka broker has become disconnected

exception pykafka.exceptions.TopicAuthorizationFailed
Bases: pykafka.exceptions.ProtocolClientError

Returned by the broker when the client is not authorized to access the requested topic.

exception pykafka.exceptions.UnknownError
Bases: pykafka.exceptions.ProtocolClientError

An unexpected server error

exception pykafka.exceptions.UnknownMemberId
Bases: pykafka.exceptions.ProtocolClientError

7.2. API Documentation 35

pykafka, Release 2.6.1.dev1

Returned from group requests (offset commits/fetches, heartbeats, etc) when the memberId is not in the current
generation.

exception pykafka.exceptions.UnknownTopicOrPartition
Bases: pykafka.exceptions.ProtocolClientError

This request is for a topic or partition that does not exist on this broker.

pykafka.handlers

Author: Keith Bourgoin, Emmett Butler

class pykafka.handlers.ResponseFuture(handler)
Bases: object

A response which may have a value at some point.

__init__(handler)

__weakref__
list of weak references to the object (if defined)

get(response_cls=None, timeout=None)
Block until data is ready and return.

Raises an exception if there was an error.

set_error(error)
Set error and trigger get method.

set_response(response)
Set response data and trigger get method.

class pykafka.handlers.Handler
Bases: object

Base class for Handler classes

__weakref__
list of weak references to the object (if defined)

spawn(target, *args, **kwargs)
Create the worker that will process the work to be handled

class pykafka.handlers.ThreadingHandler
Bases: pykafka.handlers.Handler

A handler that uses a threading.Thread to perform its work

Event(*args, **kwargs)
A factory function that returns a new event.

Events manage a flag that can be set to true with the set() method and reset to false with the clear() method.
The wait() method blocks until the flag is true.

Lock()
allocate_lock() -> lock object (allocate() is an obsolete synonym)

Create a new lock object. See help(LockType) for information about locks.

36 Chapter 7. Support

pykafka, Release 2.6.1.dev1

class Queue(maxsize=0)
Create a queue object with a given maximum size.

If maxsize is <= 0, the queue size is infinite.

empty()
Return True if the queue is empty, False otherwise (not reliable!).

full()
Return True if the queue is full, False otherwise (not reliable!).

get(block=True, timeout=None)
Remove and return an item from the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default), block if necessary until an item is
available. If ‘timeout’ is a non-negative number, it blocks at most ‘timeout’ seconds and raises the
Empty exception if no item was available within that time. Otherwise (‘block’ is false), return an item
if one is immediately available, else raise the Empty exception (‘timeout’ is ignored in that case).

get_nowait()
Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise raise the Empty exception.

join()
Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate the item was retrieved and all work on it is
complete.

When the count of unfinished tasks drops to zero, join() unblocks.

put(item, block=True, timeout=None)
Put an item into the queue.

If optional args ‘block’ is true and ‘timeout’ is None (the default), block if necessary until a free slot
is available. If ‘timeout’ is a non-negative number, it blocks at most ‘timeout’ seconds and raises the
Full exception if no free slot was available within that time. Otherwise (‘block’ is false), put an item
on the queue if a free slot is immediately available, else raise the Full exception (‘timeout’ is ignored
in that case).

put_nowait(item)
Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available. Otherwise raise the Full exception.

qsize()
Return the approximate size of the queue (not reliable!).

task_done()
Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done()
tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

class ThreadingHandler.Semaphore(value=1)
Bases: object

7.2. API Documentation 37

pykafka, Release 2.6.1.dev1

This class implements semaphore objects.

Semaphores manage a counter representing the number of release() calls minus the number of acquire()
calls, plus an initial value. The acquire() method blocks if necessary until it can return without making the
counter negative. If not given, value defaults to 1.

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015
Python Software Foundation. All rights reserved.

__enter__(blocking=True, timeout=None)
Acquire a semaphore, decrementing the internal counter by one.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by
one and return immediately. If it is zero on entry, block, waiting until some other thread has called
release() to make it larger than zero. This is done with proper interlocking so that if multiple acquire()
calls are blocked, release() will wake exactly one of them up. The implementation may pick one at
random, so the order in which blocked threads are awakened should not be relied on. There is no
return value in this case.

When invoked with blocking set to true, do the same thing as when called without arguments, and
return true.

When invoked with blocking set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

When invoked with a timeout other than None, it will block for at most timeout seconds. If acquire
does not complete successfully in that interval, return false. Return true otherwise.

__weakref__
list of weak references to the object (if defined)

acquire(blocking=True, timeout=None)
Acquire a semaphore, decrementing the internal counter by one.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by
one and return immediately. If it is zero on entry, block, waiting until some other thread has called
release() to make it larger than zero. This is done with proper interlocking so that if multiple acquire()
calls are blocked, release() will wake exactly one of them up. The implementation may pick one at
random, so the order in which blocked threads are awakened should not be relied on. There is no
return value in this case.

When invoked with blocking set to true, do the same thing as when called without arguments, and
return true.

When invoked with blocking set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

When invoked with a timeout other than None, it will block for at most timeout seconds. If acquire
does not complete successfully in that interval, return false. Return true otherwise.

release()
Release a semaphore, incrementing the internal counter by one.

When the counter is zero on entry and another thread is waiting for it to become larger than zero again,
wake up that thread.

ThreadingHandler.Socket = <module ‘socket’ from ‘/usr/lib/python2.7/socket.pyc’>

class pykafka.handlers.RequestHandler(handler, connection)
Bases: object

38 Chapter 7. Support

pykafka, Release 2.6.1.dev1

Uses a Handler instance to dispatch requests.

class Shared(connection, requests, ending)
Bases: tuple

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

__getstate__()
Exclude the OrderedDict from pickling

static __new__(_cls, connection, requests, ending)
Create new instance of Shared(connection, requests, ending)

__repr__()
Return a nicely formatted representation string

_asdict()
Return a new OrderedDict which maps field names to their values

classmethod _make(iterable, new=<built-in method __new__ of type object at 0x906d60>,
len=<built-in function len>)

Make a new Shared object from a sequence or iterable

_replace(_self, **kwds)
Return a new Shared object replacing specified fields with new values

connection
Alias for field number 0

ending
Alias for field number 2

requests
Alias for field number 1

class RequestHandler.Task(request, future)
Bases: tuple

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

__getstate__()
Exclude the OrderedDict from pickling

static __new__(_cls, request, future)
Create new instance of Task(request, future)

__repr__()
Return a nicely formatted representation string

_asdict()
Return a new OrderedDict which maps field names to their values

classmethod _make(iterable, new=<built-in method __new__ of type object at 0x906d60>,
len=<built-in function len>)

Make a new Task object from a sequence or iterable

_replace(_self, **kwds)
Return a new Task object replacing specified fields with new values

future
Alias for field number 1

7.2. API Documentation 39

pykafka, Release 2.6.1.dev1

request
Alias for field number 0

RequestHandler.__init__(handler, connection)

RequestHandler.__weakref__
list of weak references to the object (if defined)

RequestHandler._start_thread()
Run the request processor

RequestHandler.request(request, has_response=True)
Construct a new request

Parameters has_response – Whether this request will return a response

Returns pykafka.handlers.ResponseFuture

RequestHandler.start()
Start the request processor.

RequestHandler.stop()
Stop the request processor.

pykafka.managedbalancedconsumer

class pykafka.managedbalancedconsumer.ManagedBalancedConsumer(topic, cluster,
consumer_group,
fetch_message_max_bytes=1048576,
num_consumer_fetchers=1,
auto_commit_enable=False,
auto_commit_interval_ms=60000,
queued_max_messages=2000,
fetch_min_bytes=1,
fetch_error_backoff_ms=500,
fetch_wait_max_ms=100,
off-
sets_channel_backoff_ms=1000,
off-
sets_commit_max_retries=5,
auto_offset_reset=-2,
consumer_timeout_ms=-
1, rebal-
ance_max_retries=5,
rebal-
ance_backoff_ms=2000,
auto_start=True, re-
set_offset_on_start=False,
post_rebalance_callback=None,
use_rdkafka=False,
com-
pacted_topic=True,
heart-
beat_interval_ms=3000)

Bases: pykafka.balancedconsumer.BalancedConsumer

40 Chapter 7. Support

pykafka, Release 2.6.1.dev1

A self-balancing consumer that uses Kafka 0.9’s Group Membership API

Implements the Group Management API semantics for Kafka 0.9 compatibility

Maintains a single instance of SimpleConsumer, periodically using the consumer rebalancing algorithm to reas-
sign partitions to this SimpleConsumer.

This class overrides the functionality of pykafka.balancedconsumer.BalancedConsumer that deals
with ZooKeeper and inherits other functionality directly.

__init__(topic, cluster, consumer_group, fetch_message_max_bytes=1048576,
num_consumer_fetchers=1, auto_commit_enable=False, auto_commit_interval_ms=60000,
queued_max_messages=2000, fetch_min_bytes=1, fetch_error_backoff_ms=500,
fetch_wait_max_ms=100, offsets_channel_backoff_ms=1000, off-
sets_commit_max_retries=5, auto_offset_reset=-2, consumer_timeout_ms=-1,
rebalance_max_retries=5, rebalance_backoff_ms=2000, auto_start=True, re-
set_offset_on_start=False, post_rebalance_callback=None, use_rdkafka=False, com-
pacted_topic=True, heartbeat_interval_ms=3000)

Create a ManagedBalancedConsumer instance

Parameters

• topic (pykafka.topic.Topic) – The topic this consumer should consume

• cluster (pykafka.cluster.Cluster) – The cluster to which this consumer
should connect

• consumer_group (bytes) – The name of the consumer group this consumer should
join.

• fetch_message_max_bytes (int) – The number of bytes of messages to attempt
to fetch with each fetch request

• num_consumer_fetchers (int) – The number of workers used to make FetchRe-
quests

• auto_commit_enable (bool) – If true, periodically commit to kafka the offset of
messages already fetched by this consumer. This also requires that consumer_group is not
None.

• auto_commit_interval_ms (int) – The frequency (in milliseconds) at which the
consumer’s offsets are committed to kafka. This setting is ignored if auto_commit_enable
is False.

• queued_max_messages (int) – The maximum number of messages buffered for con-
sumption in the internal pykafka.simpleconsumer.SimpleConsumer

• fetch_min_bytes (int) – The minimum amount of data (in bytes) that the server
should return for a fetch request. If insufficient data is available, the request will block
until sufficient data is available.

• fetch_error_backoff_ms (int) – UNUSED. See pykafka.
simpleconsumer.SimpleConsumer.

• fetch_wait_max_ms (int) – The maximum amount of time (in milliseconds) that
the server will block before answering a fetch request if there isn’t sufficient data to im-
mediately satisfy fetch_min_bytes.

• offsets_channel_backoff_ms (int) – Backoff time to retry failed offset com-
mits and fetches.

• offsets_commit_max_retries (int) – The number of times the offset commit
worker should retry before raising an error.

7.2. API Documentation 41

pykafka, Release 2.6.1.dev1

• auto_offset_reset (pykafka.common.OffsetType) – What to do if an offset
is out of range. This setting indicates how to reset the consumer’s internal offset counter
when an OffsetOutOfRangeError is encountered.

• consumer_timeout_ms (int) – Amount of time (in milliseconds) the consumer may
spend without messages available for consumption before returning None.

• rebalance_max_retries (int) – The number of times the rebalance should retry
before raising an error.

• rebalance_backoff_ms (int) – Backoff time (in milliseconds) between retries dur-
ing rebalance.

• auto_start (bool) – Whether the consumer should start after __init__ is complete. If
false, it can be started with start().

• reset_offset_on_start (bool) – Whether the consumer should reset its internal
offset counter to self._auto_offset_reset and commit that offset immediately upon starting
up

• post_rebalance_callback (function) – A function to be called when a re-
balance is in progress. This function should accept three arguments: the pykafka.
balancedconsumer.BalancedConsumer instance that just completed its rebal-
ance, a dict of partitions that it owned before the rebalance, and a dict of partitions it owns
after the rebalance. These dicts map partition ids to the most recently known offsets for
those partitions. This function can optionally return a dictionary mapping partition ids to
offsets. If it does, the consumer will reset its offsets to the supplied values before continu-
ing consumption. Note that the BalancedConsumer is in a poorly defined state at the time
this callback runs, so that accessing its properties (such as held_offsets or partitions) might
yield confusing results. Instead, the callback should really rely on the provided partition-id
dicts, which are well-defined.

• use_rdkafka (bool) – Use librdkafka-backed consumer if available

• compacted_topic (bool) – Set to read from a compacted topic. Forces consumer to
use less stringent message ordering logic because compacted topics do not provide offsets
in strict incrementing order.

• heartbeat_interval_ms (int) – The amount of time in milliseconds to wait be-
tween heartbeat requests

_build_default_error_handlers()
Set up default responses to common error codes

_handle_error(error_code)
Call the appropriate handler function for the given error code

Parameters error_code (int) – The error code returned from a Group Membership API
request

_join_group()
Send a JoinGroupRequest.

Assigns a member id and tells the coordinator about this consumer.

_setup_heartbeat_worker()
Start the heartbeat worker

_sync_group(group_assignments)
Send a SyncGroupRequest.

42 Chapter 7. Support

pykafka, Release 2.6.1.dev1

If this consumer is the group leader, this call informs the other consumers of their partition assignments.
For all consumers including the leader, this call is used to fetch partition assignments.

The group leader could tell itself its own assignment instead of using the result of this request, but it does
the latter to ensure consistency.

_update_member_assignment()
Join a managed consumer group and start consuming assigned partitions

Equivalent to pykafka.balancedconsumer.BalancedConsumer._update_member_assignment, but uses the
Kafka 0.9 Group Membership API instead of ZooKeeper to manage group state

start()
Start this consumer.

Must be called before consume() if auto_start=False.

stop()
Stop this consumer

Should be called as part of a graceful shutdown

pykafka.partition

Author: Keith Bourgoin, Emmett Butler

class pykafka.partition.Partition(topic, id_, leader, replicas, isr)
Bases: object

A Partition is an abstraction over the kafka concept of a partition. A kafka partition is a logical division of the
logs for a topic. Its messages are totally ordered.

__init__(topic, id_, leader, replicas, isr)
Instantiate a new Partition

Parameters

• topic (pykafka.topic.Topic) – The topic to which this Partition belongs

• id (int) – The identifier for this partition

• leader (pykafka.broker.Broker) – The broker that is currently acting as the
leader for this partition.

• replicas (Iterable of pykafka.broker.Broker) – A list of brokers containing
this partition’s replicas

• isr (pykafka.broker.Broker) – The current set of in-sync replicas for this parti-
tion

__weakref__
list of weak references to the object (if defined)

earliest_available_offset()
Get the earliest offset for this partition.

fetch_offset_limit(offsets_before, max_offsets=1)

Use the Offset API to find a limit of valid offsets for this partition.

Parameters

• offsets_before (int) – Return an offset from before this timestamp (in millisec-
onds)

7.2. API Documentation 43

pykafka, Release 2.6.1.dev1

• max_offsets (int) – The maximum number of offsets to return

id
The identifying int for this partition, unique within its topic

isr
The current list of in-sync replicas for this partition

latest_available_offset()
Get the offset of the next message that would be appended to this partition

leader
The broker currently acting as leader for this partition

replicas
The list of brokers currently holding replicas of this partition

topic
The topic to which this partition belongs

update(brokers, metadata)
Update this partition with fresh metadata.

Parameters

• brokers (List of pykafka.broker.Broker) – Brokers on which partitions exist

• metadata (pykafka.protocol.PartitionMetadata) – Metadata for the par-
tition

pykafka.partitioners

Author: Keith Bourgoin, Emmett Butler

pykafka.partitioners.random_partitioner(partitions, key)
Returns a random partition out of all of the available partitions.

class pykafka.partitioners.BasePartitioner
Bases: object

Base class for custom class-based partitioners.

A partitioner is used by the pykafka.producer.Producer to decide which partition to which to produce
messages.

__weakref__
list of weak references to the object (if defined)

class pykafka.partitioners.HashingPartitioner(hash_func=None)
Bases: pykafka.partitioners.BasePartitioner

Returns a (relatively) consistent partition out of all available partitions based on the key.

Messages that are published with the same keys are not guaranteed to end up on the same broker if the number
of brokers changes (due to the addition or removal of a broker, planned or unplanned) or if the number of topics
per partition changes. This is also unreliable when not all brokers are aware of a topic, since the number of
available partitions will be in flux until all brokers have accepted a write to that topic and have declared how
many partitions that they are actually serving.

__call__(partitions, key)

Parameters

44 Chapter 7. Support

pykafka, Release 2.6.1.dev1

• partitions (sequence of pykafka.base.BasePartition) – The partitions
from which to choose

• key (Any hashable type if using the default hash() implementation, any valid value for
your custom hash function) – Key used for routing

Returns A partition

Return type pykafka.base.BasePartition

__init__(hash_func=None)

Parameters hash_func (function) – hash function (defaults to hash()), should return
an int. If hash randomization (Python 2.7) is enabled, a custom hashing function should be
defined that is consistent between interpreter restarts.

class pykafka.partitioners.GroupHashingPartitioner(hash_func, group_size=1)
Bases: pykafka.partitioners.BasePartitioner

Messages published with the identical keys will be directed to a consistent subset of ‘n’ partitions from the set of
available partitions. For example, if there are 16 partitions and group_size=4, messages with the identical keys
will be shared equally between a subset of four partitions, instead of always being directed to the same partition.

The same guarantee caveats apply as to the pykafka.base.HashingPartitioner.

__call__(partitions, key)

Parameters

• partitions (sequence of pykafka.base.BasePartition) – The partitions
from which to choose

• key (Any hashable type if using the default hash() implementation, any valid value for
your custom hash function) – Key used for routing

Returns A partition

Return type pykafka.base.BasePartition

__init__(hash_func, group_size=1)

Parameters

• hash_func (function) – A hash function

• group_size (Integer value between (0, total_partition_count))
– Size of the partition group to assign to. For example, if there are 16 partitions, and we
want to smooth the distribution of identical keys between a set of 4, use 4 as the group_size.

pykafka.producer

class pykafka.producer.Producer(cluster, topic, partitioner=<function random_partitioner>,
compression=0, max_retries=3, retry_backoff_ms=100,
required_acks=1, ack_timeout_ms=10000,
max_queued_messages=100000, min_queued_messages=70000,
linger_ms=5000, block_on_queue_full=True,
max_request_size=1000012, sync=False, delivery_reports=False,
auto_start=True)

Bases: object

Implements asynchronous producer logic similar to the JVM driver.

7.2. API Documentation 45

pykafka, Release 2.6.1.dev1

It creates a thread of execution for each broker that is the leader of one or more of its topic’s partitions. Each
of these threads (which may use threading or some other parallelism implementation like gevent) is associated
with a queue that holds the messages that are waiting to be sent to that queue’s broker.

__enter__()
Context manager entry point - start the producer

__exit__(exc_type, exc_value, traceback)
Context manager exit point - stop the producer

__init__(cluster, topic, partitioner=<function random_partitioner>, compression=0,
max_retries=3, retry_backoff_ms=100, required_acks=1, ack_timeout_ms=10000,
max_queued_messages=100000, min_queued_messages=70000, linger_ms=5000,
block_on_queue_full=True, max_request_size=1000012, sync=False, deliv-
ery_reports=False, auto_start=True)

Instantiate a new AsyncProducer

Parameters

• cluster (pykafka.cluster.Cluster) – The cluster to which to connect

• topic (pykafka.topic.Topic) – The topic to which to produce messages

• partitioner (pykafka.partitioners.BasePartitioner) – The parti-
tioner to use during message production

• compression (pykafka.common.CompressionType) – The type of compres-
sion to use.

• max_retries (int) – How many times to attempt to produce a given batch of messages
before raising an error. Allowing retries will potentially change the ordering of records
because if two records are sent to a single partition, and the first fails and is retried but
the second succeeds, then the second record may appear first. If you want to completely
disallow message reordering, use sync=True.

• retry_backoff_ms (int) – The amount of time (in milliseconds) to back off during
produce request retries. This does not equal the total time spent between message send
attempts, since that number can be influenced by other kwargs, including linger_ms and
socket_timeout_ms.

• required_acks (int) – The number of other brokers that must have committed the
data to their log and acknowledged this to the leader before a request is considered com-
plete

• ack_timeout_ms (int) – The amount of time (in milliseconds) to wait for acknowl-
edgment of a produce request.

• max_queued_messages (int) – The maximum number of messages the producer can
have waiting to be sent to the broker. If messages are sent faster than they can be delivered
to the broker, the producer will either block or throw an exception based on the preference
specified with block_on_queue_full.

• min_queued_messages (int) – The minimum number of messages the producer can
have waiting in a queue before it flushes that queue to its broker (must be greater than 0).
This paramater can be used to control the number of messages sent in one batch during
async production. This parameter is automatically overridden to 1 when sync=True.

• linger_ms (int) – This setting gives the upper bound on the delay for batching: once
the producer gets min_queued_messages worth of messages for a broker, it will be sent
immediately regardless of this setting. However, if we have fewer than this many messages
accumulated for this partition we will ‘linger’ for the specified time waiting for more
records to show up. linger_ms=0 indicates no lingering.

46 Chapter 7. Support

pykafka, Release 2.6.1.dev1

• block_on_queue_full (bool) – When the producer’s message queue for a broker
contains max_queued_messages, we must either stop accepting new messages (block) or
throw an error. If True, this setting indicates we should block until space is available in
the queue. If False, we should throw an error immediately.

• max_request_size (int) – The maximum size of a request in bytes. This is also
effectively a cap on the maximum record size. Note that the server has its own cap on
record size which may be different from this. This setting will limit the number of record
batches the producer will send in a single request to avoid sending huge requests.

• sync (bool) – Whether calls to produce should wait for the message to send before
returning. If True, an exception will be raised from produce() if delivery to kafka failed.

• delivery_reports (bool) – If set to True, the producer will maintain a thread-local
queue on which delivery reports are posted for each message produced. These must reg-
ularly be retrieved through get_delivery_report(), which returns a 2-tuple of pykafka.
protocol.Message and either None (for success) or an Exception in case of failed
delivery to kafka. If get_delivery_report() is not called regularly with this setting enabled,
memory usage will grow unbounded. This setting is ignored when sync=True.

• auto_start (bool) – Whether the producer should begin communicating with kafka
after __init__ is complete. If false, communication can be started with start().

__weakref__
list of weak references to the object (if defined)

_produce(message)
Enqueue a message for the relevant broker

Parameters message (pykafka.protocol.Message) – Message with valid partition_id, ready to
be sent

_raise_worker_exceptions()
Raises exceptions encountered on worker threads

_send_request(message_batch, owned_broker)
Send the produce request to the broker and handle the response.

Parameters

• message_batch (iterable of pykafka.protocol.Message) – An iterable of messages to
send

• owned_broker (pykafka.producer.OwnedBroker) – The broker to which to
send the request

_setup_owned_brokers()
Instantiate one OwnedBroker per broker

If there are already OwnedBrokers instantiated, safely stop and flush them before creating new ones.

_update()
Update the producer and cluster after an ERROR_CODE

Also re-produces messages that were in queues at the time the update was triggered

_wait_all()
Block until all pending messages are sent

“Pending” messages are those that have been used in calls to produce and have not yet been dequeued and
sent to the broker

7.2. API Documentation 47

pykafka, Release 2.6.1.dev1

get_delivery_report(block=True, timeout=None)
Fetch delivery reports for messages produced on the current thread

Returns 2-tuples of a pykafka.protocol.Message and either None (for successful deliveries) or Exception
(for failed deliveries). This interface is only available if you enabled delivery_reports on init (and you did
not use sync=True)

Parameters

• block (bool) – Whether to block on dequeueing a delivery report

• timeout – How long (in seconds) to block before returning None

;type timeout: int

produce(message, partition_key=None, timestamp=None)
Produce a message.

Parameters

• message (bytes) – The message to produce (use None to send null)

• partition_key (bytes) – The key to use when deciding which partition to send this
message to

Returns The pykafka.protocol.Message instance that was added to the internal mes-
sage queue

start()
Set up data structures and start worker threads

stop()
Mark the producer as stopped, and wait until all messages to be sent

pykafka.protocol

class pykafka.protocol.MetadataRequest(topics=None)
Bases: pykafka.protocol.Request

Metadata Request

Specification:

MetadataRequest => [TopicName]
TopicName => string

API_KEY
API_KEY for this request, from the Kafka docs

__init__(topics=None)
Create a new MetadataRequest

Parameters topics – Topics to query. Leave empty for all available topics.

__len__()
Length of the serialized message, in bytes

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

48 Chapter 7. Support

pykafka, Release 2.6.1.dev1

class pykafka.protocol.MetadataResponse(buff)
Bases: pykafka.protocol.Response

Response from MetadataRequest

Specification:

MetadataResponse => [Broker][TopicMetadata]
Broker => NodeId Host Port
NodeId => int32
Host => string
Port => int32
TopicMetadata => TopicErrorCode TopicName [PartitionMetadata]
TopicErrorCode => int16
PartitionMetadata => PartitionErrorCode PartitionId Leader Replicas Isr
PartitionErrorCode => int16
PartitionId => int32
Leader => int32
Replicas => [int32]
Isr => [int32]

__init__(buff)
Deserialize into a new Response

Parameters buff (bytearray) – Serialized message

class pykafka.protocol.ProduceRequest(compression_type=0, required_acks=1, timeout=10000)
Bases: pykafka.protocol.Request

Produce Request

Specification:

ProduceRequest => RequiredAcks Timeout [TopicName [Partition MessageSetSize
→˓MessageSet]]
RequiredAcks => int16
Timeout => int32
Partition => int32
MessageSetSize => int32

API_KEY
API_KEY for this request, from the Kafka docs

__init__(compression_type=0, required_acks=1, timeout=10000)
Create a new ProduceRequest

required_acks determines how many acknowledgement the server waits for before returning. This is
useful for ensuring the replication factor of published messages. The behavior is:

-1: Block until all servers acknowledge
0: No waiting -- server doesn't even respond to the Produce request
1: Wait for this server to write to the local log and then return
2+: Wait for N servers to acknowledge

Parameters

• partition_requests – Iterable of kafka.pykafka.protocol.
PartitionProduceRequest for this request

• compression_type – Compression to use for messages

7.2. API Documentation 49

pykafka, Release 2.6.1.dev1

• required_acks – see docstring

• timeout – timeout (in ms) to wait for the required acks

__len__()
Length of the serialized message, in bytes

add_message(message, topic_name, partition_id)
Add a list of kafka.common.Message to the waiting request

Parameters

• messages – an iterable of kafka.common.Message to add

• topic_name – the name of the topic to publish to

• partition_id – the partition to publish to

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

message_count()
Get the number of messages across all MessageSets in the request.

messages
Iterable of all messages in the Request

class pykafka.protocol.ProduceResponse(buff)
Bases: pykafka.protocol.Response

Produce Response. Checks to make sure everything went okay.

Specification:

ProduceResponse => [TopicName [Partition ErrorCode Offset]]
TopicName => string
Partition => int32
ErrorCode => int16
Offset => int64

__init__(buff)
Deserialize into a new Response

Parameters buff (bytearray) – Serialized message

class pykafka.protocol.OffsetRequest(partition_requests)
Bases: pykafka.protocol.Request

An offset request

Specification:

OffsetRequest => ReplicaId [TopicName [Partition Time MaxNumberOfOffsets]]
ReplicaId => int32
TopicName => string
Partition => int32
Time => int64
MaxNumberOfOffsets => int32

50 Chapter 7. Support

pykafka, Release 2.6.1.dev1

API_KEY
API_KEY for this request, from the Kafka docs

__init__(partition_requests)
Create a new offset request

__len__()
Length of the serialized message, in bytes

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

class pykafka.protocol.OffsetResponse(buff)
Bases: pykafka.protocol.Response

An offset response

Specification:

OffsetResponse => [TopicName [PartitionOffsets]]
PartitionOffsets => Partition ErrorCode [Offset]
Partition => int32
ErrorCode => int16
Offset => int64

__init__(buff)
Deserialize into a new Response

Parameters buff (bytearray) – Serialized message

class pykafka.protocol.OffsetCommitRequest(consumer_group, con-
sumer_group_generation_id, consumer_id,
partition_requests=[])

Bases: pykafka.protocol.Request

An offset commit request

Specification:

OffsetCommitRequest => ConsumerGroupId ConsumerGroupGenerationId ConsumerId
→˓[TopicName [Partition Offset TimeStamp Metadata]]

ConsumerGroupId => string
ConsumerGroupGenerationId => int32
ConsumerId => string
TopicName => string
Partition => int32
Offset => int64
TimeStamp => int64
Metadata => string

API_KEY
API_KEY for this request, from the Kafka docs

__init__(consumer_group, consumer_group_generation_id, consumer_id, partition_requests=[])
Create a new offset commit request

Parameters partition_requests – Iterable of kafka.pykafka.protocol.
PartitionOffsetCommitRequest for this request

7.2. API Documentation 51

pykafka, Release 2.6.1.dev1

__len__()
Length of the serialized message, in bytes

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

class pykafka.protocol.FetchRequest(partition_requests=[], timeout=1000, min_bytes=1024,
api_version=0)

Bases: pykafka.protocol.Request

A Fetch request sent to Kafka

Specification:

FetchRequest => ReplicaId MaxWaitTime MinBytes [TopicName [Partition FetchOffset
→˓MaxBytes]]
ReplicaId => int32
MaxWaitTime => int32
MinBytes => int32
TopicName => string
Partition => int32
FetchOffset => int64
MaxBytes => int32

API_KEY
API_KEY for this request, from the Kafka docs

__init__(partition_requests=[], timeout=1000, min_bytes=1024, api_version=0)
Create a new fetch request

Kafka 0.8 uses long polling for fetch requests, which is different from 0.7x. Instead of polling and waiting,
we can now set a timeout to wait and a minimum number of bytes to be collected before it returns. This
way we can block effectively and also ensure good network throughput by having fewer, large transfers
instead of many small ones every time a byte is written to the log.

Parameters

• partition_requests – Iterable of kafka.pykafka..protocol.
PartitionFetchRequest for this request

• timeout – Max time to wait (in ms) for a response from the server

• min_bytes – Minimum bytes to collect before returning

__len__()
Length of the serialized message, in bytes

add_request(partition_request)
Add a topic/partition/offset to the requests

Parameters

• topic_name – The topic to fetch from

• partition_id – The partition to fetch from

• offset – The offset to start reading data from

• max_bytes – The maximum number of bytes to return in the response

52 Chapter 7. Support

pykafka, Release 2.6.1.dev1

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

class pykafka.protocol.FetchResponse(buff, offset=0)
Bases: pykafka.protocol.Response

Unpack a fetch response from the server

Specification:

FetchResponse => [TopicName [Partition ErrorCode HighwaterMarkOffset
→˓MessageSetSize MessageSet]]
TopicName => string
Partition => int32
ErrorCode => int16
HighwaterMarkOffset => int64
MessageSetSize => int32

__init__(buff, offset=0)
Deserialize into a new Response

Parameters

• buff (bytearray) – Serialized message

• offset (int) – Offset into the message

_unpack_message_set(buff, partition_id=-1)
MessageSets can be nested. Get just the Messages out of it.

static get_subclass(broker_protocol)
Choose which subclass of response to demand and expect. Cf. https://cwiki.apache.org/confluence/
display/KAFKA/A+Guide+To+The+Kafka+Protocol

class pykafka.protocol.PartitionFetchRequest
Bases: pykafka.protocol.PartitionFetchRequest

Fetch request for a specific topic/partition

Variables

• topic_name – Name of the topic to fetch from

• partition_id – Id of the partition to fetch from

• offset – Offset at which to start reading

• max_bytes – Max bytes to read from this partition (default: 300kb)

class pykafka.protocol.OffsetCommitResponse(buff)
Bases: pykafka.protocol.Response

An offset commit response

Specification:

OffsetCommitResponse => [TopicName [Partition ErrorCode]]]
TopicName => string
Partition => int32
ErrorCode => int16

7.2. API Documentation 53

https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol

pykafka, Release 2.6.1.dev1

__init__(buff)
Deserialize into a new Response

Parameters buff (bytearray) – Serialized message

class pykafka.protocol.OffsetFetchRequest(consumer_group, partition_requests=[])
Bases: pykafka.protocol.Request

An offset fetch request

Specification:

OffsetFetchRequest => ConsumerGroup [TopicName [Partition]]
ConsumerGroup => string
TopicName => string
Partition => int32

API_KEY
API_KEY for this request, from the Kafka docs

__init__(consumer_group, partition_requests=[])
Create a new offset fetch request

Parameters partition_requests – Iterable of kafka.pykafka.protocol.
PartitionOffsetFetchRequest for this request

__len__()
Length of the serialized message, in bytes

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

class pykafka.protocol.OffsetFetchResponse(buff)
Bases: pykafka.protocol.Response

An offset fetch response

Specification:

OffsetFetchResponse => [TopicName [Partition Offset Metadata ErrorCode]]
TopicName => string
Partition => int32
Offset => int64
Metadata => string
ErrorCode => int16

__init__(buff)
Deserialize into a new Response

Parameters buff (bytearray) – Serialized message

class pykafka.protocol.PartitionOffsetRequest
Bases: pykafka.protocol.PartitionOffsetRequest

Offset request for a specific topic/partition

Variables

• topic_name – Name of the topic to look up

• partition_id – Id of the partition to look up

54 Chapter 7. Support

pykafka, Release 2.6.1.dev1

• offsets_before – Retrieve offset information for messages before this timestamp (ms).
-1 will retrieve the latest offsets and -2 will retrieve the earliest available offset. If -2,only 1
offset is returned

• max_offsets – How many offsets to return

class pykafka.protocol.GroupCoordinatorRequest(consumer_group)
Bases: pykafka.protocol.Request

A consumer metadata request

Specification:

GroupCoordinatorRequest => ConsumerGroup
ConsumerGroup => string

API_KEY
API_KEY for this request, from the Kafka docs

__init__(consumer_group)
Create a new group coordinator request

__len__()
Length of the serialized message, in bytes

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

class pykafka.protocol.GroupCoordinatorResponse(buff)
Bases: pykafka.protocol.Response

A group coordinator response

Specification:

GroupCoordinatorResponse => ErrorCode CoordinatorId CoordinatorHost
→˓CoordinatorPort

ErrorCode => int16
CoordinatorId => int32
CoordinatorHost => string
CoordinatorPort => int32

__init__(buff)
Deserialize into a new Response

Parameters buff (bytearray) – Serialized message

class pykafka.protocol.PartitionOffsetCommitRequest
Bases: pykafka.protocol.PartitionOffsetCommitRequest

Offset commit request for a specific topic/partition

Variables

• topic_name – Name of the topic to look up

• partition_id – Id of the partition to look up

• offset –

• timestamp –

7.2. API Documentation 55

pykafka, Release 2.6.1.dev1

• metadata – arbitrary metadata that should be committed with this offset commit

class pykafka.protocol.PartitionOffsetFetchRequest
Bases: pykafka.protocol.PartitionOffsetFetchRequest

Offset fetch request for a specific topic/partition

Variables

• topic_name – Name of the topic to look up

• partition_id – Id of the partition to look up

class pykafka.protocol.Request
Bases: pykafka.utils.Serializable

Base class for all Requests. Handles writing header information

API_KEY()
API key for this request, from the Kafka docs

__weakref__
list of weak references to the object (if defined)

_write_header(buff, api_version=0, correlation_id=0)
Write the header for an outgoing message.

Parameters

• buff (buffer) – The buffer into which to write the header

• api_version (int) – The “kafka api version id”, used for feature flagging

• correlation_id (int) – This is a user-supplied integer. It will be passed back in the
response by the server, unmodified. It is useful for matching request and response between
the client and server.

get_bytes()
Serialize the message

Returns Serialized message

Return type bytearray

class pykafka.protocol.Response
Bases: object

Base class for Response objects.

__weakref__
list of weak references to the object (if defined)

raise_error(err_code, response)
Raise an error based on the Kafka error code

Parameters

• err_code – The error code from Kafka

• response – The unpacked raw data from the response

class pykafka.protocol.Message(value, partition_key=None, compression_type=0, offset=-1,
partition_id=-1, produce_attempt=0, protocol_version=0, times-
tamp=None, delivery_report_q=None)

Bases: pykafka.common.Message, pykafka.utils.Serializable

Representation of a Kafka Message

56 Chapter 7. Support

pykafka, Release 2.6.1.dev1

NOTE: Compression is handled in the protocol because of the way Kafka embeds compressed MessageSets
within Messages

Specification:

Message => Crc MagicByte Attributes Key Value
Crc => int32
MagicByte => int8
Attributes => int8
Key => bytes
Value => bytes

pykafka.protocol.Message also contains partition and partition_id fields. Both of these have meaning-
less default values. When pykafka.protocol.Message is used by the producer, partition_id identifies
the Message’s destination partition. When used in a pykafka.protocol.FetchRequest, partition_id is
set to the id of the partition from which the message was sent on receipt of the message. In the pykafka.
simpleconsumer.SimpleConsumer, partition is set to the pykafka.partition.Partition in-
stance from which the message was sent.

Variables

• compression_type – The compression algorithm used to generate the message’s cur-
rent value. Internal use only - regardless of the algorithm used, this will be Compression-
Type.NONE in any publicly accessible ‘Message‘s.

• partition_key – Value used to assign this message to a particular partition.

• value – The payload associated with this message

• offset – The offset of the message

• partition_id – The id of the partition to which this message belongs

• delivery_report_q – For use by pykafka.producer.Producer

pack_into(buff, offset)
Serialize and write to buff starting at offset offset.

Intentionally follows the pattern of struct.pack_into

Parameters

• buff – The buffer to write into

• offset – The offset to start the write at

timestamp_dt
Get the timestamp as a datetime, if valid

class pykafka.protocol.MessageSet(compression_type=0, messages=None)
Bases: pykafka.utils.Serializable

Representation of a set of messages in Kafka

This isn’t useful outside of direct communications with Kafka, so we keep it hidden away here.

N.B.: MessageSets are not preceded by an int32 like other array elements in the protocol.

Specification:

MessageSet => [Offset MessageSize Message]
Offset => int64
MessageSize => int32

7.2. API Documentation 57

pykafka, Release 2.6.1.dev1

Variables

• messages – The list of messages currently in the MessageSet

• compression_type – compression to use for the messages

__init__(compression_type=0, messages=None)
Create a new MessageSet

Parameters

• compression_type – Compression to use on the messages

• messages – An initial list of messages for the set

__len__()
Length of the serialized message, in bytes

We don’t put the MessageSetSize in front of the serialization because that’s technically not part of the
MessageSet. Most requests/responses using MessageSets need that size, though, so be careful when using
this.

__weakref__
list of weak references to the object (if defined)

_get_compressed()
Get a compressed representation of all current messages.

Returns a Message object with correct headers set and compressed data in the value field.

classmethod decode(buff, partition_id=-1)
Decode a serialized MessageSet.

pack_into(buff, offset)
Serialize and write to buff starting at offset offset.

Intentionally follows the pattern of struct.pack_into

Parameters

• buff – The buffer to write into

• offset – The offset to start the write at

58 Chapter 7. Support

pykafka, Release 2.6.1.dev1

pykafka.simpleconsumer

class pykafka.simpleconsumer.SimpleConsumer(topic, cluster, con-
sumer_group=None, partitions=None,
fetch_message_max_bytes=1048576,
num_consumer_fetchers=1,
auto_commit_enable=False,
auto_commit_interval_ms=60000,
queued_max_messages=2000,
fetch_min_bytes=1,
fetch_error_backoff_ms=500,
fetch_wait_max_ms=100, off-
sets_channel_backoff_ms=1000,
offsets_commit_max_retries=5,
auto_offset_reset=-2, consumer_timeout_ms=-
1, auto_start=True, re-
set_offset_on_start=False, com-
pacted_topic=False, generation_id=-1, con-
sumer_id=’‘)

Bases: object

A non-balancing consumer for Kafka

__del__()
Stop consumption and workers when object is deleted

__init__(topic, cluster, consumer_group=None, partitions=None,
fetch_message_max_bytes=1048576, num_consumer_fetchers=1,
auto_commit_enable=False, auto_commit_interval_ms=60000,
queued_max_messages=2000, fetch_min_bytes=1, fetch_error_backoff_ms=500,
fetch_wait_max_ms=100, offsets_channel_backoff_ms=1000, off-
sets_commit_max_retries=5, auto_offset_reset=-2, consumer_timeout_ms=-1,
auto_start=True, reset_offset_on_start=False, compacted_topic=False, generation_id=-1,
consumer_id=’‘)

Create a SimpleConsumer.

Settings and default values are taken from the Scala consumer implementation. Consumer group is in-
cluded because it’s necessary for offset management, but doesn’t imply that this is a balancing consumer.
Use a BalancedConsumer for that.

Parameters

• topic (pykafka.topic.Topic) – The topic this consumer should consume

• cluster (pykafka.cluster.Cluster) – The cluster to which this consumer
should connect

• consumer_group (bytes) – The name of the consumer group this consumer should
use for offset committing and fetching.

• partitions (Iterable of pykafka.partition.Partition) – Existing partitions
to which to connect

• fetch_message_max_bytes (int) – The number of bytes of messages to attempt
to fetch

• num_consumer_fetchers (int) – The number of workers used to make FetchRe-
quests

7.2. API Documentation 59

pykafka, Release 2.6.1.dev1

• auto_commit_enable (bool) – If true, periodically commit to kafka the offset of
messages already fetched by this consumer. This also requires that consumer_group is not
None.

• auto_commit_interval_ms (int) – The frequency (in milliseconds) at which the
consumer offsets are committed to kafka. This setting is ignored if auto_commit_enable
is False.

• queued_max_messages (int) – Maximum number of messages buffered for con-
sumption per partition

• fetch_min_bytes (int) – The minimum amount of data (in bytes) the server should
return for a fetch request. If insufficient data is available the request will block until
sufficient data is available.

• fetch_error_backoff_ms (int) – The amount of time (in milliseconds) that the
consumer should wait before retrying after an error. Errors include absence of data
(RD_KAFKA_RESP_ERR__PARTITION_EOF), so this can slow a normal fetch scenario.
Only used by the native consumer (RdKafkaSimpleConsumer).

• fetch_wait_max_ms (int) – The maximum amount of time (in milliseconds) the
server will block before answering the fetch request if there isn’t sufficient data to imme-
diately satisfy fetch_min_bytes.

• offsets_channel_backoff_ms (int) – Backoff time (in milliseconds) to retry
offset commits/fetches

• offsets_commit_max_retries (int) – Retry the offset commit up to this many
times on failure.

• auto_offset_reset (pykafka.common.OffsetType) – What to do if an offset
is out of range. This setting indicates how to reset the consumer’s internal offset counter
when an OffsetOutOfRangeError is encountered.

• consumer_timeout_ms (int) – Amount of time (in milliseconds) the consumer may
spend without messages available for consumption before returning None.

• auto_start (bool) – Whether the consumer should begin communicating with kafka
after __init__ is complete. If false, communication can be started with start().

• reset_offset_on_start (bool) – Whether the consumer should reset its internal
offset counter to self._auto_offset_reset and commit that offset immediately upon starting
up

• compacted_topic (bool) – Set to read from a compacted topic. Forces consumer to
use less stringent message ordering logic because compacted topics do not provide offsets
in strict incrementing order.

• generation_id (int) – The generation id with which to make group requests

• consumer_id (bytes) – The identifying string to use for this consumer on group re-
quests

__iter__()
Yield an infinite stream of messages until the consumer times out

__weakref__
list of weak references to the object (if defined)

_auto_commit()
Commit offsets only if it’s time to do so

60 Chapter 7. Support

pykafka, Release 2.6.1.dev1

_build_default_error_handlers()
Set up the error handlers to use for partition errors.

_discover_group_coordinator()
Set the group coordinator for this consumer.

If a consumer group is not supplied to __init__, this method does nothing

_raise_worker_exceptions()
Raises exceptions encountered on worker threads

_setup_autocommit_worker()
Start the autocommitter thread

_setup_fetch_workers()
Start the fetcher threads

_update()
Update the consumer and cluster after an ERROR_CODE

_wait_for_slot_available()
Block until at least one queue has less than _queued_max_messages

commit_offsets()
Commit offsets for this consumer’s partitions

Uses the offset commit/fetch API

consume(block=True)
Get one message from the consumer.

Parameters block (bool) – Whether to block while waiting for a message

fetch()
Fetch new messages for all partitions

Create a FetchRequest for each broker and send it. Enqueue each of the returned messages in the appro-
prate OwnedPartition.

fetch_offsets()
Fetch offsets for this consumer’s topic

Uses the offset commit/fetch API

Returns List of (id, pykafka.protocol.OffsetFetchPartitionResponse) tuples

held_offsets
Return a map from partition id to held offset for each partition

partitions
A list of the partitions that this consumer consumes

reset_offsets(partition_offsets=None)
Reset offsets for the specified partitions

Issue an OffsetRequest for each partition and set the appropriate returned offset in the consumer’s internal
offset counter.

Parameters partition_offsets (Sequence of tuples of the form (pykafka.
partition.Partition, int)) – (partition, timestamp_or_offset) pairs to reset where
partition is the partition for which to reset the offset and timestamp_or_offset is EITHER the
timestamp of the message whose offset the partition should have OR the new “most recently
consumed” offset the partition should have

7.2. API Documentation 61

pykafka, Release 2.6.1.dev1

NOTE: If an instance of timestamp_or_offset is treated by kafka as an invalid offset timestamp, this
function directly sets the consumer’s internal offset counter for that partition to that instance of times-
tamp_or_offset. This counter represents the offset most recently consumed. On the next fetch request, the
consumer attempts to fetch messages starting from that offset plus one. See the following link for more
information on what kafka treats as a valid offset timestamp: https://cwiki.apache.org/confluence/display/
KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetRequest

start()
Begin communicating with Kafka, including setting up worker threads

Fetches offsets, starts an offset autocommitter worker pool, and starts a message fetcher worker pool.

stop()
Flag all running workers for deletion.

topic
The topic this consumer consumes

pykafka.topic

Author: Keith Bourgoin, Emmett Butler

class pykafka.topic.Topic(cluster, topic_metadata)
Bases: object

A Topic is an abstraction over the kafka concept of a topic. It contains a dictionary of partitions that comprise
it.

__init__(cluster, topic_metadata)
Create the Topic from metadata.

Parameters

• cluster (pykafka.cluster.Cluster) – The Cluster to use

• topic_metadata (pykafka.protocol.TopicMetadata) – Metadata for all
topics.

__weakref__
list of weak references to the object (if defined)

earliest_available_offsets()
Get the earliest offset for each partition of this topic.

fetch_offset_limits(offsets_before, max_offsets=1)
Get earliest or latest offset.

Use the Offset API to find a limit of valid offsets for each partition in this topic.

Parameters

• offsets_before (int) – Return an offset from before this timestamp (in millisec-
onds)

• max_offsets (int) – The maximum number of offsets to return

get_balanced_consumer(consumer_group, managed=False, **kwargs)
Return a BalancedConsumer of this topic

Parameters

• consumer_group (bytes) – The name of the consumer group to join

62 Chapter 7. Support

https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetRequest
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetRequest

pykafka, Release 2.6.1.dev1

• managed (bool) – If True, manage the consumer group with Kafka using the 0.9 group
management api (requires Kafka >=0.9))

get_producer(use_rdkafka=False, **kwargs)
Create a pykafka.producer.Producer for this topic.

For a description of all available kwargs, see the Producer docstring.

get_simple_consumer(consumer_group=None, use_rdkafka=False, **kwargs)
Return a SimpleConsumer of this topic

Parameters

• consumer_group (bytes) – The name of the consumer group to join

• use_rdkafka (bool) – Use librdkafka-backed consumer if available

get_sync_producer(**kwargs)
Create a pykafka.producer.Producer for this topic.

The created Producer instance will have sync=True.

For a description of all available kwargs, see the Producer docstring.

latest_available_offsets()
Fetch the next available offset

Get the offset of the next message that would be appended to each partition of this topic.

name
The name of this topic

partitions
A dictionary containing all known partitions for this topic

update(metadata)
Update the Partitions with metadata about the cluster.

Parameters metadata (pykafka.protocol.TopicMetadata) – Metadata for all top-
ics

pykafka.utils.compression

Author: Keith Bourgoin

pykafka.utils.compression.encode_gzip(buff)
Encode a buffer using gzip

pykafka.utils.compression.decode_gzip(buff)
Decode a buffer using gzip

pykafka.utils.compression.encode_snappy(buff, xerial_compatible=False, xe-
rial_blocksize=32768)

Encode a buffer using snappy

If xerial_compatible is set, the buffer is encoded in a fashion compatible with the xerial snappy library.

The block size (xerial_blocksize) controls how frequently the blocking occurs. 32k is the default in the xerial
library.

The format is as follows: +————-+————+————–+————+————–+ | Header | Block1 len |
Block1 data | Blockn len | Blockn data | |————-+————+————–+————+————–| | 16 bytes |
BE int32 | snappy bytes | BE int32 | snappy bytes | +————-+————+————–+————+————–+

7.2. API Documentation 63

pykafka, Release 2.6.1.dev1

It is important to note that blocksize is the amount of uncompressed data presented to snappy at each block,
whereas blocklen is the number of bytes that will be present in the stream.

Adapted from kafka-python https://github.com/mumrah/kafka-python/pull/127/files

pykafka.utils.compression.decode_snappy(buff)
Decode a buffer using Snappy

If xerial is found to be in use, the buffer is decoded in a fashion compatible with the xerial snappy library.

Adapted from kafka-python https://github.com/mumrah/kafka-python/pull/127/files

pykafka.utils.error_handlers

Author: Emmett Butler

pykafka.utils.error_handlers.handle_partition_responses(error_handlers,
parts_by_error=None,
success_handler=None,
response=None, parti-
tions_by_id=None)

Call the appropriate handler for each errored partition

Parameters

• error_handlers (dict {int: callable(parts)}) – mapping of error code
to handler

• parts_by_error (dict {int: iterable(pykafka.simpleconsumer.
OwnedPartition)}) – a dict of partitions grouped by error code

• success_handler (callable accepting an iterable of partition
responses) – function to call for successful partitions

• response (pykafka.protocol.Response) – a Response object containing parti-
tion responses

• partitions_by_id (dict {int: pykafka.simpleconsumer.
OwnedPartition}) – a dict mapping partition ids to OwnedPartition instances

pykafka.utils.error_handlers.raise_error(error, info=’‘)
Raise the given error

pykafka.utils.socket

Author: Keith Bourgoin, Emmett Butler

pykafka.utils.socket.recvall_into(socket, bytea, size)
Reads size bytes from the socket into the provided bytearray (modifies in-place.)

This is basically a hack around the fact that socket.recv_into doesn’t allow buffer offsets.

Return type bytearray

pykafka.utils.struct_helpers

Author: Keith Bourgoin, Emmett Butler

64 Chapter 7. Support

https://github.com/mumrah/kafka-python/pull/127/files
https://github.com/mumrah/kafka-python/pull/127/files

pykafka, Release 2.6.1.dev1

pykafka.utils.struct_helpers.unpack_from(fmt, buff, offset=0)
A customized version of struct.unpack_from

This is a conveinence function that makes decoding the arrays, strings, and byte arrays that we get from Kafka
significantly easier. It takes the same arguments as struct.unpack_from but adds 3 new formats:

•Wrap a section in [] to indicate an array. e.g.: [ii]

•S for strings (int16 followed by byte array)

•Y for byte arrays (int32 followed by byte array)

Spaces are ignored in the format string, allowing more readable formats

NOTE: This may be a performance bottleneck. We’re avoiding a lot of memory allocations by using the
same buffer, but if we could call struct.unpack_from only once, that’s about an order of magnitude faster.
However, constructing the format string to do so would erase any gains we got from having the single call.

Indices and tables

• genindex

• modindex

• search

7.3. Indices and tables 65

pykafka, Release 2.6.1.dev1

66 Chapter 7. Support

Python Module Index

p
pykafka.balancedconsumer, 20
pykafka.broker, 24
pykafka.client, 27
pykafka.cluster, 29
pykafka.common, 30
pykafka.connection, 31
pykafka.exceptions, 33
pykafka.handlers, 36
pykafka.managedbalancedconsumer, 40
pykafka.partition, 43
pykafka.partitioners, 44
pykafka.producer, 45
pykafka.protocol, 48
pykafka.simpleconsumer, 59
pykafka.topic, 62
pykafka.utils.compression, 63
pykafka.utils.error_handlers, 64
pykafka.utils.socket, 64
pykafka.utils.struct_helpers, 64

67

pykafka, Release 2.6.1.dev1

68 Python Module Index

Index

Symbols
__call__() (pykafka.partitioners.GroupHashingPartitioner

method), 45
__call__() (pykafka.partitioners.HashingPartitioner

method), 44
__del__() (pykafka.connection.BrokerConnection

method), 32
__del__() (pykafka.simpleconsumer.SimpleConsumer

method), 59
__enter__() (pykafka.handlers.ThreadingHandler.Semaphore

method), 38
__enter__() (pykafka.producer.Producer method), 46
__exit__() (pykafka.producer.Producer method), 46
__getnewargs__() (pykafka.handlers.RequestHandler.Shared

method), 39
__getnewargs__() (pykafka.handlers.RequestHandler.Task

method), 39
__getstate__() (pykafka.handlers.RequestHandler.Shared

method), 39
__getstate__() (pykafka.handlers.RequestHandler.Task

method), 39
__init__() (pykafka.balancedconsumer.BalancedConsumer

method), 20
__init__() (pykafka.broker.Broker method), 24
__init__() (pykafka.client.KafkaClient method), 28
__init__() (pykafka.cluster.Cluster method), 29
__init__() (pykafka.connection.BrokerConnection

method), 32
__init__() (pykafka.connection.SslConfig method), 31
__init__() (pykafka.handlers.RequestHandler method),

40
__init__() (pykafka.handlers.ResponseFuture method),

36
__init__() (pykafka.managedbalancedconsumer.ManagedBalancedConsumer

method), 41
__init__() (pykafka.partition.Partition method), 43
__init__() (pykafka.partitioners.GroupHashingPartitioner

method), 45
__init__() (pykafka.partitioners.HashingPartitioner

method), 45
__init__() (pykafka.producer.Producer method), 46
__init__() (pykafka.protocol.FetchRequest method), 52
__init__() (pykafka.protocol.FetchResponse method), 53
__init__() (pykafka.protocol.GroupCoordinatorRequest

method), 55
__init__() (pykafka.protocol.GroupCoordinatorResponse

method), 55
__init__() (pykafka.protocol.MessageSet method), 58
__init__() (pykafka.protocol.MetadataRequest method),

48
__init__() (pykafka.protocol.MetadataResponse method),

49
__init__() (pykafka.protocol.OffsetCommitRequest

method), 51
__init__() (pykafka.protocol.OffsetCommitResponse

method), 53
__init__() (pykafka.protocol.OffsetFetchRequest

method), 54
__init__() (pykafka.protocol.OffsetFetchResponse

method), 54
__init__() (pykafka.protocol.OffsetRequest method), 51
__init__() (pykafka.protocol.OffsetResponse method), 51
__init__() (pykafka.protocol.ProduceRequest method),

49
__init__() (pykafka.protocol.ProduceResponse method),

50
__init__() (pykafka.simpleconsumer.SimpleConsumer

method), 59
__init__() (pykafka.topic.Topic method), 62
__iter__() (pykafka.balancedconsumer.BalancedConsumer

method), 22
__iter__() (pykafka.simpleconsumer.SimpleConsumer

method), 60
__len__() (pykafka.protocol.FetchRequest method), 52
__len__() (pykafka.protocol.GroupCoordinatorRequest

method), 55
__len__() (pykafka.protocol.MessageSet method), 58
__len__() (pykafka.protocol.MetadataRequest method),

48

69

pykafka, Release 2.6.1.dev1

__len__() (pykafka.protocol.OffsetCommitRequest
method), 51

__len__() (pykafka.protocol.OffsetFetchRequest
method), 54

__len__() (pykafka.protocol.OffsetRequest method), 51
__len__() (pykafka.protocol.ProduceRequest method), 50
__new__() (pykafka.handlers.RequestHandler.Shared

static method), 39
__new__() (pykafka.handlers.RequestHandler.Task static

method), 39
__repr__() (pykafka.handlers.RequestHandler.Shared

method), 39
__repr__() (pykafka.handlers.RequestHandler.Task

method), 39
__weakref__ (pykafka.balancedconsumer.BalancedConsumer

attribute), 22
__weakref__ (pykafka.broker.Broker attribute), 25
__weakref__ (pykafka.client.KafkaClient attribute), 29
__weakref__ (pykafka.cluster.Cluster attribute), 29
__weakref__ (pykafka.common.CompressionType

attribute), 31
__weakref__ (pykafka.common.OffsetType attribute), 31
__weakref__ (pykafka.connection.BrokerConnection at-

tribute), 32
__weakref__ (pykafka.connection.SslConfig attribute),

32
__weakref__ (pykafka.exceptions.KafkaException

attribute), 34
__weakref__ (pykafka.handlers.Handler attribute), 36
__weakref__ (pykafka.handlers.RequestHandler at-

tribute), 40
__weakref__ (pykafka.handlers.ResponseFuture at-

tribute), 36
__weakref__ (pykafka.handlers.ThreadingHandler.Semaphore

attribute), 38
__weakref__ (pykafka.partition.Partition attribute), 43
__weakref__ (pykafka.partitioners.BasePartitioner

attribute), 44
__weakref__ (pykafka.producer.Producer attribute), 47
__weakref__ (pykafka.protocol.MessageSet attribute), 58
__weakref__ (pykafka.protocol.Request attribute), 56
__weakref__ (pykafka.protocol.Response attribute), 56
__weakref__ (pykafka.simpleconsumer.SimpleConsumer

attribute), 60
__weakref__ (pykafka.topic.Topic attribute), 62
_add_partitions() (pykafka.balancedconsumer.BalancedConsumer

method), 22
_add_self() (pykafka.balancedconsumer.BalancedConsumer

method), 22
_asdict() (pykafka.handlers.RequestHandler.Shared

method), 39
_asdict() (pykafka.handlers.RequestHandler.Task

method), 39
_auto_commit() (pykafka.simpleconsumer.SimpleConsumer

method), 60
_build_default_error_handlers()

(pykafka.managedbalancedconsumer.ManagedBalancedConsumer
method), 42

_build_default_error_handlers()
(pykafka.simpleconsumer.SimpleConsumer
method), 60

_build_watch_callback() (pykafka.balancedconsumer.BalancedConsumer
method), 22

_decide_partitions() (pykafka.balancedconsumer.BalancedConsumer
method), 22

_discover_group_coordinator()
(pykafka.simpleconsumer.SimpleConsumer
method), 61

_get_brokers_from_zookeeper() (pykafka.cluster.Cluster
method), 29

_get_compressed() (pykafka.protocol.MessageSet
method), 58

_get_held_partitions() (pykafka.balancedconsumer.BalancedConsumer
method), 22

_get_internal_consumer()
(pykafka.balancedconsumer.BalancedConsumer
method), 22

_get_metadata() (pykafka.cluster.Cluster method), 30
_get_participants() (pykafka.balancedconsumer.BalancedConsumer

method), 22
_get_unique_req_handler() (pykafka.broker.Broker

method), 25
_handle_error() (pykafka.managedbalancedconsumer.ManagedBalancedConsumer

method), 42
_join_group() (pykafka.managedbalancedconsumer.ManagedBalancedConsumer

method), 42
_legacy_wrap_socket() (pykafka.connection.SslConfig

method), 32
_make() (pykafka.handlers.RequestHandler.Shared class

method), 39
_make() (pykafka.handlers.RequestHandler.Task class

method), 39
_partitions (pykafka.balancedconsumer.BalancedConsumer

attribute), 22
_path_from_partition() (pykafka.balancedconsumer.BalancedConsumer

method), 23
_path_self (pykafka.balancedconsumer.BalancedConsumer

attribute), 23
_produce() (pykafka.producer.Producer method), 47
_raise_worker_exceptions()

(pykafka.balancedconsumer.BalancedConsumer
method), 23

_raise_worker_exceptions() (pykafka.producer.Producer
method), 47

_raise_worker_exceptions()
(pykafka.simpleconsumer.SimpleConsumer
method), 61

_rebalance() (pykafka.balancedconsumer.BalancedConsumer

70 Index

pykafka, Release 2.6.1.dev1

method), 23
_remove_partitions() (pykafka.balancedconsumer.BalancedConsumer

method), 23
_replace() (pykafka.handlers.RequestHandler.Shared

method), 39
_replace() (pykafka.handlers.RequestHandler.Task

method), 39
_request_metadata() (pykafka.cluster.Cluster method), 30
_send_request() (pykafka.producer.Producer method), 47
_set_watches() (pykafka.balancedconsumer.BalancedConsumer

method), 23
_setup_autocommit_worker()

(pykafka.simpleconsumer.SimpleConsumer
method), 61

_setup_fetch_workers() (pykafka.simpleconsumer.SimpleConsumer
method), 61

_setup_heartbeat_worker()
(pykafka.managedbalancedconsumer.ManagedBalancedConsumer
method), 42

_setup_internal_consumer()
(pykafka.balancedconsumer.BalancedConsumer
method), 23

_setup_owned_brokers() (pykafka.producer.Producer
method), 47

_setup_zookeeper() (pykafka.balancedconsumer.BalancedConsumer
method), 23

_start_thread() (pykafka.handlers.RequestHandler
method), 40

_sync_group() (pykafka.managedbalancedconsumer.ManagedBalancedConsumer
method), 42

_unpack_message_set() (pykafka.protocol.FetchResponse
method), 53

_update() (pykafka.producer.Producer method), 47
_update() (pykafka.simpleconsumer.SimpleConsumer

method), 61
_update_brokers() (pykafka.cluster.Cluster method), 30
_update_member_assignment()

(pykafka.balancedconsumer.BalancedConsumer
method), 23

_update_member_assignment()
(pykafka.managedbalancedconsumer.ManagedBalancedConsumer
method), 43

_wait_all() (pykafka.producer.Producer method), 47
_wait_for_slot_available()

(pykafka.simpleconsumer.SimpleConsumer
method), 61

_write_header() (pykafka.protocol.Request method), 56

A
acquire() (pykafka.handlers.ThreadingHandler.Semaphore

method), 38
add_message() (pykafka.protocol.ProduceRequest

method), 50

add_request() (pykafka.protocol.FetchRequest method),
52

API_KEY (pykafka.protocol.FetchRequest attribute), 52
API_KEY (pykafka.protocol.GroupCoordinatorRequest

attribute), 55
API_KEY (pykafka.protocol.MetadataRequest attribute),

48
API_KEY (pykafka.protocol.OffsetCommitRequest at-

tribute), 51
API_KEY (pykafka.protocol.OffsetFetchRequest at-

tribute), 54
API_KEY (pykafka.protocol.OffsetRequest attribute), 50
API_KEY (pykafka.protocol.ProduceRequest attribute),

49
API_KEY() (pykafka.protocol.Request method), 56

B
BalancedConsumer (class in pykafka.balancedconsumer),

20
BasePartitioner (class in pykafka.partitioners), 44
Broker (class in pykafka.broker), 24
BrokerConnection (class in pykafka.connection), 32
brokers (pykafka.cluster.Cluster attribute), 30

C
Cluster (class in pykafka.cluster), 29
commit_consumer_group_offsets()

(pykafka.broker.Broker method), 25
commit_offsets() (pykafka.balancedconsumer.BalancedConsumer

method), 23
commit_offsets() (pykafka.simpleconsumer.SimpleConsumer

method), 61
CompressionType (class in pykafka.common), 31
connect() (pykafka.broker.Broker method), 25
connect() (pykafka.connection.BrokerConnection

method), 32
connect_offsets_channel() (pykafka.broker.Broker

method), 25
connected (pykafka.broker.Broker attribute), 25
connected (pykafka.connection.BrokerConnection

attribute), 32
connection (pykafka.handlers.RequestHandler.Shared at-

tribute), 39
consume() (pykafka.balancedconsumer.BalancedConsumer

method), 23
consume() (pykafka.simpleconsumer.SimpleConsumer

method), 61
ConsumerStoppedException, 33

D
decode() (pykafka.protocol.MessageSet class method), 58
decode_gzip() (in module pykafka.utils.compression), 63
decode_snappy() (in module pykafka.utils.compression),

64

Index 71

pykafka, Release 2.6.1.dev1

disconnect() (pykafka.connection.BrokerConnection
method), 32

E
earliest_available_offset() (pykafka.partition.Partition

method), 43
earliest_available_offsets() (pykafka.topic.Topic

method), 62
empty() (pykafka.handlers.ThreadingHandler.Queue

method), 37
encode_gzip() (in module pykafka.utils.compression), 63
encode_snappy() (in module pykafka.utils.compression),

63
ending (pykafka.handlers.RequestHandler.Shared at-

tribute), 39
Event() (pykafka.handlers.ThreadingHandler method), 36

F
fetch() (pykafka.simpleconsumer.SimpleConsumer

method), 61
fetch_consumer_group_offsets() (pykafka.broker.Broker

method), 25
fetch_offset_limit() (pykafka.partition.Partition method),

43
fetch_offset_limits() (pykafka.topic.Topic method), 62
fetch_offsets() (pykafka.simpleconsumer.SimpleConsumer

method), 61
FetchRequest (class in pykafka.protocol), 52
FetchResponse (class in pykafka.protocol), 53
from_metadata() (pykafka.broker.Broker class method),

26
full() (pykafka.handlers.ThreadingHandler.Queue

method), 37
future (pykafka.handlers.RequestHandler.Task attribute),

39

G
get() (pykafka.handlers.ResponseFuture method), 36
get() (pykafka.handlers.ThreadingHandler.Queue

method), 37
get_balanced_consumer() (pykafka.topic.Topic method),

62
get_bytes() (pykafka.protocol.FetchRequest method), 52
get_bytes() (pykafka.protocol.GroupCoordinatorRequest

method), 55
get_bytes() (pykafka.protocol.MetadataRequest method),

48
get_bytes() (pykafka.protocol.OffsetCommitRequest

method), 52
get_bytes() (pykafka.protocol.OffsetFetchRequest

method), 54
get_bytes() (pykafka.protocol.OffsetRequest method), 51
get_bytes() (pykafka.protocol.ProduceRequest method),

50

get_bytes() (pykafka.protocol.Request method), 56
get_delivery_report() (pykafka.producer.Producer

method), 47
get_group_coordinator() (pykafka.cluster.Cluster

method), 30
get_managed_group_descriptions()

(pykafka.cluster.Cluster method), 30
get_nowait() (pykafka.handlers.ThreadingHandler.Queue

method), 37
get_producer() (pykafka.topic.Topic method), 63
get_simple_consumer() (pykafka.topic.Topic method), 63
get_subclass() (pykafka.protocol.FetchResponse static

method), 53
get_sync_producer() (pykafka.topic.Topic method), 63
GroupAuthorizationFailed, 33
GroupCoordinatorNotAvailable, 33
GroupCoordinatorRequest (class in pykafka.protocol), 55
GroupCoordinatorResponse (class in pykafka.protocol),

55
GroupHashingPartitioner (class in pykafka.partitioners),

45
GroupLoadInProgress, 33

H
handle_partition_responses() (in module

pykafka.utils.error_handlers), 64
Handler (class in pykafka.handlers), 36
handler (pykafka.broker.Broker attribute), 26
handler (pykafka.cluster.Cluster attribute), 30
HashingPartitioner (class in pykafka.partitioners), 44
heartbeat() (pykafka.broker.Broker method), 26
held_offsets (pykafka.balancedconsumer.BalancedConsumer

attribute), 23
held_offsets (pykafka.simpleconsumer.SimpleConsumer

attribute), 61
host (pykafka.broker.Broker attribute), 26

I
id (pykafka.broker.Broker attribute), 26
id (pykafka.partition.Partition attribute), 44
IllegalGeneration, 33
InconsistentGroupProtocol, 33
InvalidMessageError, 33
InvalidMessageSize, 33
InvalidSessionTimeout, 33
isr (pykafka.partition.Partition attribute), 44

J
join() (pykafka.handlers.ThreadingHandler.Queue

method), 37
join_group() (pykafka.broker.Broker method), 26

K
KafkaClient (class in pykafka.client), 27

72 Index

pykafka, Release 2.6.1.dev1

KafkaException, 34

L
latest_available_offset() (pykafka.partition.Partition

method), 44
latest_available_offsets() (pykafka.topic.Topic method),

63
leader (pykafka.partition.Partition attribute), 44
LeaderNotAvailable, 34
leave_group() (pykafka.broker.Broker method), 27
Lock() (pykafka.handlers.ThreadingHandler method), 36

M
ManagedBalancedConsumer (class in

pykafka.managedbalancedconsumer), 40
Message (class in pykafka.common), 30
Message (class in pykafka.protocol), 56
message_count() (pykafka.protocol.ProduceRequest

method), 50
messages (pykafka.protocol.ProduceRequest attribute),

50
MessageSet (class in pykafka.protocol), 57
MessageSizeTooLarge, 34
MetadataRequest (class in pykafka.protocol), 48
MetadataResponse (class in pykafka.protocol), 48

N
name (pykafka.topic.Topic attribute), 63
NoBrokersAvailableError, 34
NoMessagesConsumedError, 34
NotCoordinatorForGroup, 34
NotLeaderForPartition, 34

O
OffsetCommitRequest (class in pykafka.protocol), 51
OffsetCommitResponse (class in pykafka.protocol), 53
OffsetFetchRequest (class in pykafka.protocol), 54
OffsetFetchResponse (class in pykafka.protocol), 54
OffsetMetadataTooLarge, 34
OffsetOutOfRangeError, 34
OffsetRequest (class in pykafka.protocol), 50
OffsetRequestFailedError, 34
OffsetResponse (class in pykafka.protocol), 51
offsets_channel_connected (pykafka.broker.Broker at-

tribute), 27
offsets_channel_handler (pykafka.broker.Broker at-

tribute), 27
OffsetType (class in pykafka.common), 31

P
pack_into() (pykafka.protocol.Message method), 57
pack_into() (pykafka.protocol.MessageSet method), 58
Partition (class in pykafka.partition), 43

PartitionFetchRequest (class in pykafka.protocol), 53
PartitionOffsetCommitRequest (class in

pykafka.protocol), 55
PartitionOffsetFetchRequest (class in pykafka.protocol),

56
PartitionOffsetRequest (class in pykafka.protocol), 54
PartitionOwnedError, 34
partitions (pykafka.balancedconsumer.BalancedConsumer

attribute), 23
partitions (pykafka.simpleconsumer.SimpleConsumer at-

tribute), 61
partitions (pykafka.topic.Topic attribute), 63
port (pykafka.broker.Broker attribute), 27
produce() (pykafka.producer.Producer method), 48
ProduceFailureError, 34
Producer (class in pykafka.producer), 45
ProduceRequest (class in pykafka.protocol), 49
ProduceResponse (class in pykafka.protocol), 50
ProducerQueueFullError, 35
ProducerStoppedException, 35
ProtocolClientError, 35
put() (pykafka.handlers.ThreadingHandler.Queue

method), 37
put_nowait() (pykafka.handlers.ThreadingHandler.Queue

method), 37
pykafka.balancedconsumer (module), 20
pykafka.broker (module), 24
pykafka.client (module), 27
pykafka.cluster (module), 29
pykafka.common (module), 30
pykafka.connection (module), 31
pykafka.exceptions (module), 33
pykafka.handlers (module), 36
pykafka.managedbalancedconsumer (module), 40
pykafka.partition (module), 43
pykafka.partitioners (module), 44
pykafka.producer (module), 45
pykafka.protocol (module), 48
pykafka.simpleconsumer (module), 59
pykafka.topic (module), 62
pykafka.utils.compression (module), 63
pykafka.utils.error_handlers (module), 64
pykafka.utils.socket (module), 64
pykafka.utils.struct_helpers (module), 64

Q
qsize() (pykafka.handlers.ThreadingHandler.Queue

method), 37

R
raise_error() (in module pykafka.utils.error_handlers), 64
raise_error() (pykafka.protocol.Response method), 56
random_partitioner() (in module pykafka.partitioners), 44
RdKafkaException, 35

Index 73

pykafka, Release 2.6.1.dev1

RdKafkaStoppedException, 35
RebalanceInProgress, 35
reconnect() (pykafka.connection.BrokerConnection

method), 33
recvall_into() (in module pykafka.utils.socket), 64
release() (pykafka.handlers.ThreadingHandler.Semaphore

method), 38
replicas (pykafka.partition.Partition attribute), 44
Request (class in pykafka.protocol), 56
request (pykafka.handlers.RequestHandler.Task at-

tribute), 39
request() (pykafka.connection.BrokerConnection

method), 33
request() (pykafka.handlers.RequestHandler method), 40
RequestHandler (class in pykafka.handlers), 38
RequestHandler.Shared (class in pykafka.handlers), 39
RequestHandler.Task (class in pykafka.handlers), 39
requests (pykafka.handlers.RequestHandler.Shared

attribute), 39
RequestTimedOut, 35
reset_offsets() (pykafka.balancedconsumer.BalancedConsumer

method), 23
reset_offsets() (pykafka.simpleconsumer.SimpleConsumer

method), 61
Response (class in pykafka.protocol), 56
response() (pykafka.connection.BrokerConnection

method), 33
ResponseFuture (class in pykafka.handlers), 36

S
set_error() (pykafka.handlers.ResponseFuture method),

36
set_response() (pykafka.handlers.ResponseFuture

method), 36
SimpleConsumer (class in pykafka.simpleconsumer), 59
Socket (pykafka.handlers.ThreadingHandler attribute), 38
SocketDisconnectedError, 35
spawn() (pykafka.handlers.Handler method), 36
SslConfig (class in pykafka.connection), 31
start() (pykafka.balancedconsumer.BalancedConsumer

method), 24
start() (pykafka.handlers.RequestHandler method), 40
start() (pykafka.managedbalancedconsumer.ManagedBalancedConsumer

method), 43
start() (pykafka.producer.Producer method), 48
start() (pykafka.simpleconsumer.SimpleConsumer

method), 62
stop() (pykafka.balancedconsumer.BalancedConsumer

method), 24
stop() (pykafka.handlers.RequestHandler method), 40
stop() (pykafka.managedbalancedconsumer.ManagedBalancedConsumer

method), 43
stop() (pykafka.producer.Producer method), 48

stop() (pykafka.simpleconsumer.SimpleConsumer
method), 62

sync_group() (pykafka.broker.Broker method), 27

T
task_done() (pykafka.handlers.ThreadingHandler.Queue

method), 37
ThreadingHandler (class in pykafka.handlers), 36
ThreadingHandler.Queue (class in pykafka.handlers), 36
ThreadingHandler.Semaphore (class in

pykafka.handlers), 37
timestamp_dt (pykafka.protocol.Message attribute), 57
Topic (class in pykafka.topic), 62
topic (pykafka.balancedconsumer.BalancedConsumer at-

tribute), 24
topic (pykafka.partition.Partition attribute), 44
topic (pykafka.simpleconsumer.SimpleConsumer at-

tribute), 62
TopicAuthorizationFailed, 35
topics (pykafka.cluster.Cluster attribute), 30

U
UnknownError, 35
UnknownMemberId, 35
UnknownTopicOrPartition, 36
unpack_from() (in module pykafka.utils.struct_helpers),

64
update() (pykafka.cluster.Cluster method), 30
update() (pykafka.partition.Partition method), 44
update() (pykafka.topic.Topic method), 63
update_cluster() (pykafka.client.KafkaClient method), 29

W
wrap_socket() (pykafka.connection.SslConfig method),

32

74 Index

	Getting Started
	Using the librdkafka extension
	Operational Tools
	What happened to Samsa?
	PyKafka or kafka-python?
	Contributing
	Support
	Python Module Index

